中文核心期刊
CNKI期刊全文数据库
中国科学引文数据库(CSCD)源期刊
中国科技论文统计源期刊
万方数据知识服务平台
英国《科学文摘》(SA)
美国化学文摘(CA)
俄罗斯《文摘杂志》(AJ)
德国《天文学与天体物理学文摘》(AAA)
英国《中国天文学和天体物理学》(SCI收录)全文摘译期刊之一
《中国学术期刊文摘》
《中国物理文摘》
《中国天文学文摘》

• 论文 • Previous Articles     Next Articles

Research on Simulation of Deep Charging for Spacecraft Dielectrics

WANG Ji;QIU Jiawen;QIN Xiaogang;MA Yali   

  1. (National Key Laboratory of Vacuum and Cryogenics Technology and Physics, Lanzhou Institute of Space Technology Physics, Chinese Academy of Space Technology, Lanzhou 730000)
  • Received:1900-01-01 Revised:1900-01-01 Online:2008-05-15 Published:2008-05-15

Abstract: Based on Monte Carlo simulation and Radiation-Induced Conductivity (RIC) model of charging dynamics, a new predicting method aiming at spacecraft dielectrics deep charging is brought forward to calculate charging density and internal electric field and is also validated by ground tests. The charging model of dielectrics is simplified as a compound structure consisting of shielding aluminum and multiple-layer plates in Geant 4. The injected current density and dose rate profiles of Teflon along depth are statistically accumulated and normalized with practical flux density. Then substituting these results into RIC model, the distributions of charging density and electric field in Teflon under the condition of backside grounded are numerically calculated. Finally, the profiles of space charging density in Teflon under various injecting electron fluxes are measured by Pulse Electro-Acoustic method (PEA). Numerical and ground tests show that charging density and electric field increase while the injected electron flux is enhanced for Teflon radiated by 100 keV electron. The peak of charging density is about 0.042 mm and the maximum electric field is closed to the grounded side. With universal characteristics of Geant 4 particles transfer simulation and RIC model, the predicting method is suitable for various spacecraft dielectrics.

Key words: Solar wind disturbance, Solar observation, Solar wind observation