中文核心期刊
CNKI期刊全文数据库
中国科学引文数据库(CSCD)源期刊
中国科技论文统计源期刊
万方数据知识服务平台
英国《科学文摘》(SA)
美国化学文摘(CA)
俄罗斯《文摘杂志》(AJ)
德国《天文学与天体物理学文摘》(AAA)
英国《中国天文学和天体物理学》(SCI收录)全文摘译期刊之一
《中国学术期刊文摘》
《中国物理文摘》
《中国天文学文摘》

• 空间探测技术 • Previous Articles     Next Articles

Analysis and Study of Ranging Code Performance Based on Deep Space Pseudo-Noise (PN) Ranging System

GAO Yang1,2, YAN Yi1, CUI Yongshun1,2, YAO Xiujuan1   

  1. 1. Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049
  • Received:2010-12-14 Revised:2011-09-03 Online:2012-01-15 Published:2012-01-15

Abstract: The selection of ranging codes influences many parameters of the deep space ranging system, such as the ambiguity distance, ranging resolution, acquisition time and hardware implementation, etc. In this paper, several ranging codes commonly used in the deep space ranging system are simulated, analyzed, compared and studied, especially for their spectrum, cycle, DC, ranging clock attenuation, acquisition time and ranging jitter error. The signal space figure method with in-phase/out-phase correlative coefficient is used to analyze the acquisition time. And in-phase/midphase integration loop, as a chip tracking loop, is applied to analyze the ranging jitter error. Also, the influences of acquisition time and ranging jitter error due to sinusoidal pulse shaping and squarewave pulse shaping are analyzed. Through the research and analysis, some results are proposed as that T4B is chosen as ranging code in deep space ranging system, DDS method is selected to create arbitrary chip phase shift, sinusoidal pulse shaping modulation and sinusoidal pulse shaping matched filter scheme are adopted, and in-phase/mid-phase integration loop is applied to track the ranging code.

CLC Number: