中文核心期刊
CNKI期刊全文数据库
中国科学引文数据库(CSCD)源期刊
中国科技论文统计源期刊
万方数据知识服务平台
英国《科学文摘》(SA)
美国化学文摘(CA)
俄罗斯《文摘杂志》(AJ)
德国《天文学与天体物理学文摘》(AAA)
英国《中国天文学和天体物理学》(SCI收录)全文摘译期刊之一
《中国学术期刊文摘》
《中国物理文摘》
《中国天文学文摘》

Chinese Journal of Space Science ›› 2014, Vol. 34 ›› Issue (4): 460-467.doi: 10.11728/cjss2014.04.460

Previous Articles     Next Articles

Precise Orbit Determination Based on Reduced Dynamic Batch LSQ Estimation Method Using Dual-frequency GPS Observations

WANG Wenbin, LIU Rongfang   

  1. Technology and Engineering Center for Space Utilization, Chinese Academy of Science, Beijing 100094
  • Received:2014-01-21 Revised:2014-04-09 Online:2014-06-15 Published:2014-06-30

Abstract:

The dual-frequency GPS carrier phase and pseudorange measurements have become the primary observations for accurately determining the position and velocity of satellites in low Earth orbit (LEO). Reduced dynamic batch least squares (LSQ) technique is used for LEO orbit determination using pseudorange and carrier phase ionosphere-free measurements, which combines the merits of kinematic positioning technique with pure dynamic orbit determination. In order to compensate for any unmodelling or inaccuracy of the employed dynamic model, piece-wise constant accelerations are estimated in consecutive subintervals on the basis of a precise deterministic force model in the batch LSQ method. Particularly, the paper introduces two methods for calculating the sensitive matrix related to empirical accelerations and solving for the inverse of a banded sparse matrix. GRACE-A real flight data has been used to evaluate the positioning performance of the proposed method. Positioning accuracy of less than 5cm in terms of 3D RMS was achieved. The magnitudes of empirical accelerations were all less than 40nm·s-2 in radial, along-track and cross-track directions. The extra dynamic parameters CD and CR were estimated within a reasonable range and the space-borne receiver's clock offset was linear with small periodic fluctuations.

Key words: LEO orbit determination, Ionosphere-free combination, Reduced dynamic method, Batch Least Squares, Empirical acceleration, Sparse band matrix

CLC Number: