中文核心期刊
CNKI期刊全文数据库
中国科学引文数据库(CSCD)源期刊
中国科技论文统计源期刊
万方数据知识服务平台
英国《科学文摘》(SA)
美国化学文摘(CA)
俄罗斯《文摘杂志》(AJ)
德国《天文学与天体物理学文摘》(AAA)
英国《中国天文学和天体物理学》(SCI收录)全文摘译期刊之一
《中国学术期刊文摘》
《中国物理文摘》
《中国天文学文摘》

Chinese Journal of Space Science ›› 2015, Vol. 35 ›› Issue (4): 409-414.doi: 10.11728/cjss2015.04.409

Previous Articles     Next Articles

Numerical Simulation of Dipolarization Fronts in the Plasma Sheet of Magnetotail

SHEN Jingran, CAO Jinbin, LÜ Haoyu, FU Huishan   

  1. School of Astronautics, Beihang University, Beijing 100191
  • Received:2014-07-02 Revised:2015-04-07 Online:2015-06-15 Published:2015-06-30

Abstract:

This paper focuses on the numerical simulation of the physical and evolution features of the Dipolarization Fronts (DFs) by using the eight-wave MHD equations based on the conservation TVD scheme. Firstly, a numerical model of DFs which is produced by BBF flux is built up. It is made up of three parts, i.e., magnetotail balance model, substorm growth phase model and substorm triggering BFF model. The result of numerical simulation presents the features of the DFs caused by BBF flux. With the appearance of high speed flow, magnetic field Bz component shows the changing asymmetric bipolar structure, which means that pre-front decreases to negative while expands rapidly on the DFs. When Bz increases to its maximum, it falls and becomes stable. With the DFs moving earthward while the high speed flow heading to the same direction, Bz on the DFs changes less and less. The generations of high speed flux and the DFs make a wider differentiation in the tail. Therefore, Bz component starts sinking, which can be explained as the plasma of the earthward compression of the DFs generated by the speed differentiation.

Key words: Dipolarization fronts, Bursty Bulk Flow (BBF), MHD, Numerical simulation

CLC Number: