中文核心期刊
CNKI期刊全文数据库
中国科学引文数据库(CSCD)源期刊
中国科技论文统计源期刊
万方数据知识服务平台
英国《科学文摘》(SA)
美国化学文摘(CA)
俄罗斯《文摘杂志》(AJ)
德国《天文学与天体物理学文摘》(AAA)
英国《中国天文学和天体物理学》(SCI收录)全文摘译期刊之一
《中国学术期刊文摘》
《中国物理文摘》
《中国天文学文摘》

Chinese Journal of Space Science ›› 2015, Vol. 35 ›› Issue (6): 715-720.doi: 10.11728/cjss2015.06.715

Previous Articles     Next Articles

A New Method of Orbit Prediction for LEO Satellites Using Empirical Accelerations

WANG Wenbin1, LIU Rongfang2   

  1. 1 Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094;
    2 Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094
  • Received:2014-12-29 Revised:2015-06-11 Online:2015-10-15 Published:2015-12-07

Abstract:

A new method of orbit prediction for LEO satellites is proposed by using empirical accelerations to compensate for mismodelling of deterministic force models. The position, velocity and dynamical parameters such as CD, CR, and empirical accelerations are calculated in the orbit determination using reduced dynamic batch Least-Squares technique and GPS pseudorange observations. Therefore the position, velocity, CD, and CR can be used for prediction directly. Furthermore, the empirical accelerations are showed quasi-periodic and cosine characteristics with respect to time variable, in terms of which Fourier series were used to interpolate empirical accelerations. In this way, the fitted tangential empirical accelerations curve, which is added into deterministic force models to compensate for mismodelling of atmospheric drag model, forms enhanced-accuracy dynamic models that are used for orbit prediction. The GRACE-A real flight GPS pseudorange data and IGS Ultra-rapid products have been used to orbit determination and then the proposed method has been used to orbit prediction. The orbit determination results show that initial positioning accuracy is about 0.2m and velocity accuracy is about 1.0×10-4m·s-1. For a 72-hour orbit pass, the prediction accuracy is better than 60m, which is averagely improved about 2.3 times when compared to conventional dynamic models without considering empirical acceleration series fitting models. The proposed orbit determination and prediction scheme are beneficial to establish advanced, even onboard, satellite autonomous navigation system.

Key words: LEO orbit prediction, GPS pseudorange observations, IGS Ultra-rapid products, Batch Least-Squares, Tangential empirical accelerations, Fourier series fitting

CLC Number: