留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于北斗三号系统的GNSS-R海面干涉测高技术

王冬伟 孙越强 王先毅 白伟华 杜起飞 夏俊明 韩英

王冬伟, 孙越强, 王先毅, 白伟华, 杜起飞, 夏俊明, 韩英. 一种基于北斗三号系统的GNSS-R海面干涉测高技术[J]. 空间科学学报, 2022, 42(3): 492-499. doi: 10.11728/cjss2022.03.210315029
引用本文: 王冬伟, 孙越强, 王先毅, 白伟华, 杜起飞, 夏俊明, 韩英. 一种基于北斗三号系统的GNSS-R海面干涉测高技术[J]. 空间科学学报, 2022, 42(3): 492-499. doi: 10.11728/cjss2022.03.210315029
WANG Dongwei, SUN Yueqiang, WANG Xianyi, BAI Weihua, DU Qifei, XIA Junming, HAN Ying. A New GNSS-R Interferometric Ocean Altimetry Using Beidou-3 Signal (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 492-499. DOI: 10.11728/cjss2022.03.210315029
Citation: WANG Dongwei, SUN Yueqiang, WANG Xianyi, BAI Weihua, DU Qifei, XIA Junming, HAN Ying. A New GNSS-R Interferometric Ocean Altimetry Using Beidou-3 Signal (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 492-499. DOI: 10.11728/cjss2022.03.210315029

一种基于北斗三号系统的GNSS-R海面干涉测高技术

doi: 10.11728/cjss2022.03.210315029
基金项目: 国家自然科学基金项目(41505030, 41606206, 41775034),中国科学院科研装备研制项目(YZ201129)和中国科学院青年创新促进会基金(2018180)共同资助
详细信息
    作者简介:

    王冬伟:E-mail:wangdongwei@nssc.ac.cn

  • 中图分类号: TN98

A New GNSS-R Interferometric Ocean Altimetry Using Beidou-3 Signal

  • 摘要: GNSS-R干涉测高技术可用于中尺度海面高度观测,具有空间分辨率高、测量精度高等优势。与传统的GNSS-R本地码测高技术相比,GNSS-R干涉测高技术可以有效提升高度测量精度。虽然GNSS-R干涉测高技术已有一些研究,但是基于北斗三号的干涉测高应用还很少。本文根据GNSS-R干涉测高技术优势,针对北斗三号系统在干涉测高技术上的应用,研发了支持北斗三号的GNSS-R干涉测高接收机并描述了整体架构及实现。利用所研发的接收机进行水面干涉测高试验,首次获取了北斗三号B1和B2干涉测高波形,与传统GPS L1和北斗B1本地码测高波形进行对比。对两种方法计算出的水面高度进行对比,结果显示北斗三号干涉测高精度明显优于GPS L1和北斗B1传统本地码测高精度。

     

  • 图  1  本地码测高技术工作原理

    Figure  1.  Diagram of local code tracking technology

    图  2  干涉测高技术工作原理

    Figure  2.  Diagram of interferometric tracking technology

    图  3  GPS L1频段干涉测高与GPS L1本地码测高波形

    Figure  3.  GPS L1 C/A and L1 interferometric ACF results

    图  4  不同波形因子K和信号载噪比CNR与测高精度的关系

    Figure  4.  Relationships between K, CNR and the height precision

    图  5  非相干累加次数与测高精度的关系

    Figure  5.  Relationship between incoherent integration count and the height precision

    图  6  干涉信噪比SNR与测高精度的关系

    Figure  6.  Relationships between SNR and the height precision

    图  7  B1频段信号带宽与测高精度的关系

    Figure  7.  Relationship between the B1 bandwidth and height precision

    图  8  GNSS-R干涉测高接收机整体结构

    Figure  8.  GNSS-R interferometric altimeter receiver structure

    图  9  BD (a),GPS (b)和GAL (c)实测干涉测高波形

    Figure  9.  Received BD (a), GPS (b) and GAL (c) interferometric tracking waveforms

    图  10  BD (a),GPS (b)和GAL (c)实测本地码测高波形

    Figure  10.  Received BD (a), GPS (b) and GAL (c) local code tracking waveforms

    图  11  北斗三号干涉测高与本地码测高波形的对比

    Figure  11.  Comparison between BD3 interference and BD2 B1 local tracking results

    表  1  本地码测高技术与干涉测高技术可利用的GNSS信号对比

    Table  1.   Available GNSS signals using interference and local code tracking technology

    导航
    系统
    频段码型及带宽/MHz本地测高技术
    可使用码型
    本地测高技术可
    利用带宽/MHz
    干涉测高技术
    可使用码型
    干涉测高技术可
    利用带宽/MHz
    GPSL1L1C/A+L1P(授权)+
    M(授权)
    (32.736)
    L1C/A2.046L1C/A+L1P+M32.736
    L2L2C+L2P(授权)
    (20.46)
    L2C2.046L2C+L2P20.46
    L5L5I+L5Q
    (20.46)
    L5I+L5Q20.46L5I+L5Q20.46
    BDSB1IB1I(4.092)B1I4.092B1I4.092
    B1CB1C(32.736)B1C32.736B1C32.736
    B2B2A+B2B(51.15)B2A或B2B20.46B2A+B2B51.15
    B3IB3I(20.46)B3I20.46B3I20.46
    GALE1E1B+E1C(32)E1B或E1C4.092E1B+E1C32
    E5E5a+E5b(51.15)E5a或E5b20.46E5a+E5b51.15
    E6E6B+E6C(40.92)授权E6B+E6C40.92
    下载: 导出CSV

    表  2  水面高度计算结果(单位m)

    Table  2.   Results of the water surface height (unit m)

    跟踪类型卫星号时间段(UT)高度标准差
    GPS L1本地码G172019-09-27 01:14-1:440.78
    北斗B1
    本地码
    B132019-09-27 08:18-8:480.90
    北斗三号B1
    干涉
    B192019-09-27 09:10-9:400.14
    北斗三号B2干涉B222019-09-27 11:29-11:590.12
    下载: 导出CSV
  • [1] 符养, 周兆明. GNSS-R海洋遥感方法研究[J]. 武汉大学学报/信息科学版, 2006, 31(2): 128-131

    FU Yang, ZHOU Zhaoming. Investigation of ocean remote sensing by using GNSS-R signal[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 128-131
    [2] ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 951-964 doi: 10.1109/36.841977
    [3] 骆黎明, 白伟华, 孙越强, 等. 基于树模型机器学习方法的GNSS-R海面风速反演[J]. 空间科学学报, 2020, 40(4): 595-601 doi: 10.11728/cjss2020.04.595

    LUO Liming, BAI Weihua, SUN Yueqiang, et al. GNSS-R sea surface wind speed inversion based on tree model machine learning method[J]. Chinese Journal of Space Science, 2020, 40(4): 595-601 doi: 10.11728/cjss2020.04.595
    [4] CAMPS A, PARK H, PABLOS M, et al. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4730-4742 doi: 10.1109/JSTARS.2016.2588467
    [5] CHEW C, SHAH R, ZUFFADA C, et al. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission[J]. Geophysical Research Letters, 2016, 43(7): 3317-3324 doi: 10.1002/2016GL068189
    [6] YAN Q Y, HUANG W M. Sea ice thickness measurement using spaceborne GNSS-R: first results with TechDemoSat-1 data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 577-587 doi: 10.1109/JSTARS.2020.2966880
    [7] MARTÍN-NEIRA M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J]. ESA Journal, 1993, 17: 331-355
    [8] MARTÍN-NEIRA M, D’ADDIO S, BUCK C, et al. The PARIS ocean altimeter in-orbit demonstrator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2209-2237 doi: 10.1109/TGRS.2010.2092431
    [9] CAMPS A, PARK H, DOMÈNECH E V I, et al. Optimization and performance analysis of interferometric GNSS-R altimeters: application to the PARIS IoD mission[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1436-1451 doi: 10.1109/JSTARS.2014.2320873
    [10] RIBÓ S, ARCO-FERNÁNDEZ J C, NOGUÉS-CORREIG O, et al. The software PARIS interferometric receiver[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE, 2016: 5593-5595
    [11] RIUS A, NOGUÉS-CORREIG O, RIBÓ S, et al. Altimetry with GNSS-R interferometry: first proof of concept experiment[J]. GPS Solutions, 2012, 16(2): 231-241 doi: 10.1007/s10291-011-0225-9
    [12] WICKERT J, CARDELLACH E, MARTIN-NEIRA M, et al. GEROS-ISS: GNSS REflectometry, radio occultation, and Scatterometry onboard the international space station[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4552-4581 doi: 10.1109/JSTARS.2016.2614428
    [13] ALONSO-ARROYO A, QUEROL J, LOPEZ-MARTINEZ C, et al. SNR and standard deviation of cGNSS-R and iGNSS-R scatterometric measurements[J]. Sensors, 2017, 17(1): 183 doi: 10.3390/s17010183
    [14] PASCUAL D, CAMPS A, MARTIN F, et al. Precision bounds in GNSS-R ocean altimetry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1416-1423 doi: 10.1109/JSTARS.2014.2303251
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  92
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-13
  • 录用日期:  2021-12-15
  • 修回日期:  2022-01-15
  • 网络出版日期:  2022-05-26

目录

    /

    返回文章
    返回