Volume 38 Issue 2
Mar.  2018
Turn off MathJax
Article Contents
LIU Yang, PU Zuyin, XIE Lun, GUO Ruilong, WANG Xiaogang, XIAO Chijie, SHI Quanqi, DUNLOP M, BOGDANOVA Y V, MOORE T E, RUSSELL C T, LINDQVIST P A, TORBERT R B, POLLOCK C, ZHAO Cong. Ion-scale Structures in Flux Ropes Observed by MMS at the Magnetopause[J]. Chinese Journal of Space Science, 2018, 38(2): 147-168. doi: 10.11728/cjss2018.02.147
Citation: LIU Yang, PU Zuyin, XIE Lun, GUO Ruilong, WANG Xiaogang, XIAO Chijie, SHI Quanqi, DUNLOP M, BOGDANOVA Y V, MOORE T E, RUSSELL C T, LINDQVIST P A, TORBERT R B, POLLOCK C, ZHAO Cong. Ion-scale Structures in Flux Ropes Observed by MMS at the Magnetopause[J]. Chinese Journal of Space Science, 2018, 38(2): 147-168. doi: 10.11728/cjss2018.02.147

Ion-scale Structures in Flux Ropes Observed by MMS at the Magnetopause

doi: 10.11728/cjss2018.02.147
  • Received Date: 2017-11-03
  • Rev Recd Date: 2017-11-24
  • Publish Date: 2018-03-15
  • In this paper the structures with scale of ion inertial length (di) in flux ropes at the magnetopause are studied based on MMS measurements. The results show that currents ( j m) of di scale are found to exist in many flux ropes with different scales, which flow in the -M direction in magnetopause local coordinates (i.e., in the same direction of the Chapman-Ferraro current at the magnetopause) and are carried by electrons' motion in the +M direction ( v em). Within the current structures, magnetosheath and magnetospheric plasma populations are mixed; the magnetic field has open topology; ions are non-magnetized, while electrons are frozen-in with the magnetic field lines; the N-component of electric field ( E n), which is Hall electric field in nature, substantially enhances (up to about 20mV·m-1), accompanying with notable fluctuations. Detailed analysis shows that the current, separation of electrons' motion from ions and the Hall electric field are closely related to each other, and obey the general Ohm's Law. In addition, we have also analyzed the MMS measurements of magnetic reconnection events at the magnetopause. It is found that structures similar to those in flux ropes are also present inside the reconnection region in many cases. Their scales are of di length. The directions (magnitudes) of the Hall electric field E N, current filament j M and electron velocity v eM are as same as (close to) those in flux ropes. On the bases of above observations and making use of the classical flux rope models, how the di-scale structures in flux ropes are formed is studied. It is suggested that they are likely to originate from the corresponding structures in the reconnection region at the magnetopause which play an essential role in the formation process of di-scale flux ropes.

     

  • loading
  • [1]
    LE G, GOSLING J T, RUSSELL C T, et al. The magnetic and plasma structure of flux transfer events[J]. J. Geophys. Res., 1999, 104(A1):233-245
    [2]
    HAERENDEL G, PASCHMANN G, SCKOPKE N, et al. The frontside boundary layer of the magnetosphere and the problem of reconnection[J]. J. Geophys. Res., 1978, 83(A7):3195-3216
    [3]
    RUSSELL C T, ELPHIC R C. Initial ISEE magnetometer results:magnetopause observations[J]. Space Sci. Rev., 1978, 22(6):681-715
    [4]
    RIJNBEEK R P, COWLEY S W H, SOUTHWOOD D J, et al. A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers[J]. J. Geophys. Res., 1984, 89(A2):786-800
    [5]
    PASCHMANN G, HAERENDEL G, PAPAMASTORAKIS I, et al. Plasma and magnetic field characteristics of magnetic flux transfer events[J]. J. Geophys. Res., 1982, 87(A4):2159-2168
    [6]
    ELPHIC R C. Observations of flux transfer events:A review[M]//Physics of the Magnetopause. Washington, DC:AGU, 1995:225-233
    [7]
    EASTWOOD J P, PHAN T D, FEAR R C, et al. Survival of Flux Transfer Event (FTE) flux ropes far along the tail magnetopause[J]. J. Geophys. Res., 2012, 117(A8):A08222
    [8]
    ZHANG H, KIVELSON M G, ANGELOPOULOS V, et al. Generation and properties of in vivo flux transfer events[J]. J. Geophys. Res., 2012, 117(A5):A05224
    [9]
    LEE L C, FU Z F. A theory of magnetic flux transfer at the earth's magnetopause[J]. Geophys. Res. Lett., 1985, 12(2):105-108
    [10]
    RAEDER J. Flux transfer events:1. Generation mechanism for strong southward IMF[J]. Ann. Geophys., 2006, 24(1):381-392
    [11]
    SCHOLER M. Strong core magnetic fields in magnetopause flux transfer events[J]. Geophys. Res. Lett., 1988, 15(8):748-751
    [12]
    SOUTHWOOD D J, FARRUGIA C J, SAUNDERS M A. What are flux transfer events[J]. Planet. Space Sci., 1988, 36(5):503-508
    [13]
    LIU Z X, HU Y D. Local magnetic reconnection caused by vortices in the flow field[J]. Geophys. Res. Lett., 1988, 15(8):752-755
    [14]
    PU Z Y, HOU P T, LIU Z X. Vortex-induced tearing mode instability as a source of flux transfer events[J]. J. Geophys. Res., 1990, 95(A11):18861-18869
    [15]
    CHEN L J, BHATTACHARJEE A, PUHL-QUINN P A, et al. Observation of energetic electrons within magnetic islands[J]. Nat. Phys., 2008, 4(1):19-23
    [16]
    CHEN L J, BESSHO N, LEFEBVRE B, et al. Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection[J]. Phys. Plasmas, 2009, 16(5):056501. DOI: 10.1063/1.3112744
    [17]
    HUANG S Y, VAIVADS A, KHOTYAINTSEV Y V, et al. Electron acceleration in the reconnection diffusion region:Cluster observations[J]. Geophys. Res. Lett., 2012, 39(11):L11103. DOI: 10.1029/2012GL051946
    [18]
    HUANG S Y, RETINO A, PHAN T D, et al. In situ observations of flux rope at the separatrix region of magnetic reconnection[J]. J. Geophys. Res., 2016, 121(1):205-213
    [19]
    DAUGHTON W, ROYTERSHTEYN V, KARIMABADI H, et al. Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas[J]. Nat. Phys., 2011, 7(7):539-542
    [20]
    DRAKE J F, SWISDAK M, CHE H, et al. Electron acceleration from contracting magnetic islands during reconnection[J]. Nature, 2006, 443(7111):553-556
    [21]
    WANG Rongsheng, LU Quanming, LI Xing, et al. Observations of energetic electrons up to 200keV associated with a secondary island near the center of an ion diffusion region:a Cluster case study[J]. J. Geophys. Res., 2010, 115(A11):A11201. DOI: 10.1029/2010JA015473
    [22]
    EASTWOOD J P, PHAN T D, CASSAK P A, et al. Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS[J]. Geophys. Res. Lett., 2016, 43(10):4716-4724
    [23]
    HWANG K J, SIBECK D J, GILES B L, et al. The substructure of a flux transfer event observed by the MMS spacecraft[J]. Geophys. Res. Lett., 2016:43(18):9434-9443
    [24]
    TEH W L, DENTON R E, SONNERUP B U Ö, et al. MMS observations of oblique small-scale magnetopause flux ropes near the ion diffusion region during weak guide-field reconnection[J]. Geophys. Res. Lett., 2017, 44(13):6517-6524
    [25]
    TEH W L, NAKAMURA T K M, NAKAMURA R, et al. Evolution of a typical ion-scale magnetic flux rope caused by thermal pressure enhancement[J]. J. Geophys. Res., 2017, 122(2):2040-2050
    [26]
    RUSSELL C T, ANDERSON B J, BAUMJOHANN W, et al. The magnetospheric multiscale magnetometers[J]. Space Sci. Rev., 2016, 199(1/2/3/4):189-256
    [27]
    TORBERT R B, RUSSELL C T, MAGNES W, et al. The FIELDS instrument suite on MMS:Scientific objectives, measurements, and data products[J]. Space Sci. Rev., 2016, 199(1/2/3/4):105-135
    [28]
    LINDQVIST P A, OLSSON G, TORBERT R B, et al. The spin-plane double probe electric field instrument for MMS[J]. Space Sci. Rev., 2016, 199(1/2/3/4):137-165
    [29]
    POLLOCK C, MOORE T, JACQUES A, et al. Fast plasma investigation for magnetospheric multiscale[J]. Space Sci. Rev., 2016, 199(1/2/3/4):331-406
    [30]
    SONNERUP B U Ö, SCHEIBLE M. Minimum and maximum variance analysis[M]//Analysis Methods for Multi-Spacecraft Data. ISSI Scientific Reports SR-001. Noordwijk, Netherlands:International Space Science Institute, 1998:185-220
    [31]
    XIAO C J, PU Z Y, MA Z W, et al. Inferring of flux rope orientation with the minimum variance analysis technique[J]. J. Geophys. Res., 2004, 109(A11):A11218. DOI: 10.1029/2004JA010594
    [32]
    RUSSELL C T, MELLOTT M M, SMITH E J, et al. Multiple spacecraft observations of interplanetary shocks:four spacecraft determination of shock normals[J]. J. Geophys. Res., 1983, 88(A6):4739-4748
    [33]
    SCHWARTZ S J. Shock and discontinuity normals, mach numbers, and related parameters[R]//Analysis Methods for Multi-Spacecraft Data. ISSI Scientific Report SR-001. Bern:International Space Science Institute, 1998:249-270
    [34]
    ZHOU X Z, ZONG Q G, PU Z Y, et al. Multiple triangulation analysis:another approach to determine the orientation of magnetic flux ropes[J]. Ann. Geophys., 2006, 24(6):1759-1765
    [35]
    ZHOU X Z, ZONG Q G, WANG J, et al. Multiple triangulation analysis:application to determine the velocity of 2-D structures[J]. Ann. Geophys., 2006, 24(11):3173-3177
    [36]
    SHI Q Q, SHEN C, PU Z Y, et al. Dimensional analysis of observed structures using multipoint magnetic field measurements:Application to Cluster[J]. Geophys. Res. Lett., 2005, 32(12):L12105. DOI: 10.1029/2005GL022454
    [37]
    SHI Q Q, SHEN C, DUNLOP M W, et al. Motion of observed structures calculated from multi-point magnetic field measurements:Application to Cluster[J]. Geophys. Res. Lett., 2006, 33(8):L08109. DOI: 10.1029/2005GL025073
    [38]
    DE HOFFMANN F, TELLER E. Magneto-hydrodynamic shocks[J]. Phys. Rev., 1950, 80(4):692-703.
    [39]
    MOZER F S. Criteria for and statistics of electron diffusion regions associated with subsolar magnetic field reconnection[J]. J. Geophys. Res., 2005, 110(A12):A12222. DOI: 10.1029/2005JA011258
    [40]
    ZHONG J, PU Z Y, DUNLOP M W, et al. Three-dimensional magnetic flux rope structure formed by multiple sequential X-line reconnection at the magnetopause[J]. J. Geophys. Res., 2013, 118(5):1904-1911
    [41]
    PU Z Y, RAEDER J, ZHONG J, et al. Magnetic topologies of an in vivo FTE observed by Double Star/TC-1 at Earth's magnetopause[J]. Geophys. Res. Lett., 2013, 40(14):3502-3506
    [42]
    LÜ Leiqi, PU Zuyin, XIE Lun. Multiple magnetic topologies in flux transfer events:THEMIS measurements[J]. Sci. China Technol. Sci., 2016, 59(8):1283-1293
    [43]
    ROSSI B OLBERT S. Introduction to the Physics of Space[M]. New York:McGraw-Hill, 1970
    [44]
    EASTWOOD J P, PHAN T D, MOZER F S, et al. Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic Reconnection[J]. J. Geophys. Res., 2007, 112(A6):A06235. DOI: 10.1029/2006JA012158
    [45]
    SHAY M A, DRAKE J F SWISDAK M. Two-scale structure of the electron dissipation region during collisionless magnetic reconnection[J]. Phys. Rev. Lett., 2007, 99(15):155002. DOI: 10.1103/PhysRevLett.99.155002
    [46]
    MOZER F S, BALE S D, PHAN T D. Evidence of diffusion regions at a subsolar magnetopause crossing[J]. Phys. Rev. Lett., 2002, 89(1):015002
    [47]
    EASTWOOD J P, PHAN T D, ØIEROSET M, et al. Average properties of the magnetic reconnection ion diffusion region in the Earth's magnetotail:the 2001-2005 Cluster observations and comparison with simulations[J]. J. Geophys. Res., 2010, 115(A8):A08215. DOI: 10.1029/2009JA014962
    [48]
    PRITCHETT P L, MOZER F S. Asymmetric magnetic reconnection in the presence of a guide field[J]. J. Geophys. Res., 2009, 114(A11):A11210. DOI: 10.1029/2009JA014343
    [49]
    HESSE M, LIU Y H, CHEN L J, et al. On the electron diffusion region in asymmetric reconnection with a guide magnetic field[J]. Geophys. Res. Lett., 2016, 43(6):2359-2364
    [50]
    BURCH J L, TORBERT R B, PHAN T D, et al. Electron-scale measurements of magnetic reconnection in space[J]. Science, 2016, 352(6290):aaf2939. DOI:10.1126/science. aaf2939
    [51]
    CHEN L J, HESSE M, WANG Shan, et al. Electron energization and mixing observed by MMS in the vicinity of an electron diffusion region during magnetopause reconnection[J]. Geophys. Res. Lett., 2016, 43(12):6036-6043
    [52]
    WANG Rongsheng, NAKAMURA R, LU Quanming, et al. Electron-scale quadrants of the Hall magnetic field observed by the Magnetospheric Multiscale spacecraft during asymmetric reconnection[J]. Phys. Rev. Lett., 2017, 118(17):175101
    [53]
    PENG F Z, FU H S, CAO J B, et al. Quadrupolar pattern of the asymmetric guide-field reconnection[J]. J. Geophys. Res., 2017, 122(6):6349-6356
    [54]
    BURCH J L, PHAN T D. Magnetic reconnection at the dayside magnetopause:Advances with MMS[J]. Geophys. Res. Lett., 2016, 43(16):8327-8338
    [55]
    PHAN T D, EASTWOOD J P, CASSAK P A, et al. MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line[J]. Geophys. Res. Lett., 2016, 43(12):6060-6069
    [56]
    ERGUN R E, CHEN L J, WILDER F D, et al. Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause[J]. Geophys. Res. Lett., 2017, 44(7):2978-2986
    [57]
    DRAKE J F, SWISDAK M, SCHOEFFLER K M, et al. Formation of secondary islands during magnetic reconnection[J]. Geophys. Res. Lett., 2006, 33(13):L13105. DOI: 10.1029/2006GL025957
    [58]
    TREUMANN R A, BAUMJOHANN W. Collisionless magnetic reconnection in space plasmas[J]. Front. Phys., 2013, 1:31
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1249) PDF Downloads(3531) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return