Volume 38 Issue 5
Sep.  2018
Turn off MathJax
Article Contents
WANG Chi. Recent Advances in Observation and Research of the Chinese Meridian Project[J]. Chinese Journal of Space Science, 2018, 38(5): 640-649. doi: 10.11728/cjss2018.05.640
Citation: WANG Chi. Recent Advances in Observation and Research of the Chinese Meridian Project[J]. Chinese Journal of Space Science, 2018, 38(5): 640-649. doi: 10.11728/cjss2018.05.640

Recent Advances in Observation and Research of the Chinese Meridian Project

doi: 10.11728/cjss2018.05.640
More Information
  • Author Bio:

    WANG Chi,cw@spaceweather.ac.cn

  • Received Date: 2018-06-11
  • Publish Date: 2018-09-15
  • The Chinese Meridian Space Weather Monitoring Project (Meridian Project) is a ground-based geospace monitoring chain in China. It consists of 15 ground-based observation stations located roughly along 120°E longitude and 30°N latitude. In recent two years, using data from the Meridian Project, significant progress has been made in space weather and space physics research. These advances are mainly in four aspects:regional characteristics of space environment above China or along 120°E meridian line, coupling between space spheres at different heights and different physical processes, space weather disturbance and its propagation along the meridian chain, and space weather effects on ground technical facilities.

     

  • loading
  • [1]
    WANG Chi. New chains of space weather monitoring stations in China[J]. Space Weather, 2010, 8:S08001. DOI: 10.1029/2010SW000603
    [2]
    LIU L, LIU H, CHEN Y, et al. Variations of the meteor echo heights at Beijing and Mohe, China[J]. J. Geophys. Res.:Space Phys., 2017, 122:1117-1127
    [3]
    LIU L, LIU H, LE H, et al. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China[J]. J. Geophys. Res.:Space Phys., 2017, 122:2249-2259
    [4]
    YU T, XIA C, ZUO X, et al. A comparison of mesospheric and low-thermospheric winds measured by Fabry-Perot interferometer and meteor radar over central China[J]. J. Geophys. Res.:Space Phys., 2016, 121:10037-10051
    [5]
    QIU S C, TANG Y H, JIA M J, et al. A review of latitudinal characteristics of sporadic sodium layers, including new results from the Chinese meridian project[J]. EarthSci. Rev., 2016, 162:83-106
    [6]
    JIAO J, YANG G, WANG J, et al. Observations of dramatic enhancements to the mesospheric K layer[J]. Geophys. Res. Lett., 2017, 44:12536-12542
    [7]
    WANG Z, YANG G, WANG J, et al. Seasonal variations of meteoric potassium layer over Beijing (40.41°N, 116.01°E)[J]. J. Geophys. Res.:Space Phys., 2017, 122. DOI: 10.1002/2016JA023216
    [8]
    HUANG C, ZHANG S, CHEN G, et al. Planetary wave characteristics in the lower atmosphere over Xianghe (117.00°E, 39.77°N), China, revealed by the Beijing MST radar and MERRA data[J]. J. Geophys. Res.:Atmos., 2017, 122:9745-9758
    [9]
    WU C, and YI F. Local ice formation via liquid water growth in slowly ascending humid aerosol/liquid water layers observed with ground-based lidars and radiosondes[J]. J. Geophys. Res. Atmos., 2017, 122. DOI: 10.10-02/2016JD025765
    [10]
    ZHOU C, TANG Q, SONG X, et al. A statistical analysis of sporadic E layer occurrence in the mid-latitude China region[J]. J. Geophys. Res.:Space Phys., 2017, 122:3617-3631
    [11]
    LI R, CHEN T, MAN F, et al. Characteristics of low altitude ionospheric electric field over Hainan Island, China[J]. Sci. China Earth Sci., 2016, 60:770
    [12]
    SUN L, XU J, WANG W, et al. A statistical analysis of equatorial plasma bubble structures based on an all-sky airglow imager network in China[J]. J. Geophys. Res.:Space Phys., 2016, 121:11495-11517
    [13]
    WU K, XU J, WANG W, et al. Interesting equatorial plasma bubbles observed by all-sky imagers in the equatorial region of China[J]. J. Geophys. Res.:Space Phys., 2017, 122. DOI: org/10.1002/2017JA024561
    [14]
    LI Q, XU J, LIU X, et al. Characteristics of mesospheric gravity waves over the southeastern Tibetan Plateau region[J]. J. Geophys. Res.:Space Phys., 2016, 121:9204-9221
    [15]
    OUYANG X, LIU W, XIAO Z, et al. Observations of ULF waves on the ground and ionospheric Doppler shifts during storm sudden commencemen[J]. J. Geophys. Res.:Space Phys., 2016, 121:2976-2983
    [16]
    ZHANG Q H, MOEN J, LOCKWOOD M, et al. Polar cap patch transportation beyond the classic scenario[J]. J. Geophys. Res.:Space Phys., 2016, 122:9063-9074
    [17]
    HAO Y, HUANG J, LIU W, et al. Prompt GPS TEC response to magnetospheric compression[J]. J. Geophys. Res.:Space Phys., 2017, 122:4357-4366
    [18]
    CHEN G, WU C, ZHANG S, et al. Mid-latitude ionospheric responses to the 2013 SSW under high solar activity[J]. J. Geophys. Res.:Space Phys., 2016, 121:790-803
    [19]
    LEI J, et al. Contrasting behavior of the F2 peak and the topside ionosphere in response to the 2 October 2013 geomagnetic storm[J]. J. Geophys. Res.:Space Phys., 2016, 121:10549-10563
    [20]
    KUAI J, LIU L, LIU J, et al. Effects of disturbed electric fields in the low-latitude and equatorial ionosphere during the 2015 St. Patrick's Day storm[J]. J. Geophys. Res.:Space Phys., 2016, 121:9111-9126
    [21]
    YU B, XUE X, LU G, et al. The enhancement of neutral metal Na layer above thunderstorms[J]. Geophys. Res. Lett., 2017, 44. DOI: 10.1002/2017GL074977
    [22]
    LIU H, DING F, ZHAO B, et al. Ionospheric response following the Mw 7.8 Gorkha earthquake on 25 April 2015[J]. J. Geophys. Res.:Space Phys., 2017, 122:6495-6507
    [23]
    SUN L, XU J, WANG W, et al. Evolution processes of a group of Equatorial Plasma Bubble (EPBs) simultaneously observed by ground-based and satellite measurements in the equatorial region of China[J]. J. Geophys. Res.:Space Phys., 2017, 122. DOI: 10.1002/2016JA023223
    [24]
    YUE X, WANG W, LEI J, et al. Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm[J]. J. Geophys. Res.:Space Phys., 2016, 121. DOI: 10.1002/2016JA022984
    [25]
    KUAI J, LIU L, LEI J, et al. Regional differences of the ionospheric response to the July 2012 geomagnetic storm[J]. J. Geophys. Res.:Space Phys., 2017, 122. DOI: 10.1002/2016JA023844
    [26]
    LI G, NING B, ABDU M A, et al. First observation of pre-sunset ionospheric F region bottom-type scattering layer[J]. J. Geophys. Res.:Space Phys., 2017, 122:3788-3797
    [27]
    CHEN G, et al. Low-latitude daytime F region irregularities observed in two geomagnetically quiet days by the Hainan coherent scatter phased array radar (HCOPAR)[J]. J. Geophys. Res.:Space Phys., 2017, 122:2645-2654
    [28]
    ZHANG J J, WANG C, SUN T R, et al. GIC due to storm sudden commencement in low-latitude high-voltage power network in China:observation and simulation[J]. Space Weather, 2015, 13:643-655
    [29]
    ZHANG J J, WANG C, SUN T R, et al. Risk assessment of the extreme interplanetary shock of 23 July 2012 on low-latitude power networks[J]. Space Weather, 2016, 14:259-270
    [30]
    LIU L, GE X, ZONG W, et al. Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway[J]. Space Weather, 2016, 14. DOI: 10.1002/2016SW001411
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(877) PDF Downloads(1644) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return