Volume 42 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
LIU Yan, MENG Xiangguang, BAI Weihua, SUN Yueqiang, LIAO Mi, HAN Ying. Analysis of Beidou Radio Occultation Data from FY-3D Satellite (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 476-484. DOI: 10.11728/cjss2022.03.210208019
Citation: LIU Yan, MENG Xiangguang, BAI Weihua, SUN Yueqiang, LIAO Mi, HAN Ying. Analysis of Beidou Radio Occultation Data from FY-3D Satellite (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 476-484. DOI: 10.11728/cjss2022.03.210208019

Analysis of Beidou Radio Occultation Data from FY-3D Satellite

doi: 10.11728/cjss2022.03.210208019
  • Received Date: 2021-02-08
  • Accepted Date: 2021-10-08
  • Rev Recd Date: 2021-12-19
  • Available Online: 2022-05-26
  • Based on the Beidou radio occultation refractivity data of FY-3D satellite from January to March in 2018, the distribution characteristics of Beidou occultation, data accuracy and statistical characteristics of errors are studied. The Beidou Geostationary Orbit (GEO) occultation is distributed arc-shaped along the satellite orbit in the northern and southern polar regions, the Inclined Geo-Synchronous Orbit (IGSO) occultation forms one large and one small cavity respectively in the low latitude areas of the eastern and western hemispheres to form two cavities, and the Middle-Earth Orbit (MEO) occultation is distributed uniformly around the world. The accuracy of the Beidou occultion refractivity is within the range of 12~32 km in the core area. Compared with the ERA5 reanalysis data, the standard deviation of the average deviation is about 1.5%. In the range of height below 12 km and above 35 km, the standard deviation gradually increases from 1.5% to 6%. The deviation of GEO occultation over 35 km is slightly larger than that of IGSO and MEO occultation, but the standard deviation is smaller than that of these two types of occultation. The standard deviation of the descending occultation above 20 km is higher than that of the ascending occultation, but the area below 20 km is less than that of the ascending occultation. The standard deviation of the Beidou occultation is the smallest in high latitudes, followed by that in low latitudes and the largest in middle latitudes, especially in the middle and lower troposphere. The accuracy and error characteristics of the Beidou radio occultation data are consistent with the GPS radio occultation data, indicating that the Earth atmosphere occultation detection does not depend on the satellite navigation system.

     

  • loading
  • [1]
    KURSINSKI E R, HAJJ G A, SCHOFIELD J T, et al. Observing Earth’s atmosphere with radio occultation measurements using the global positioning system[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D19): 23429-23465 doi: 10.1029/97JD01569
    [2]
    ANTHES R A. Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather[J]. Atmospheric Measurement Techniques, 2011, 4(6): 1077-1103 doi: 10.5194/amt-4-1077-2011
    [3]
    WARE R, EXNER M, FENG D, et al. GPS sounding of the atmosphere from low earth orbit: preliminary results[J]. Bulletin of the American Meteorological Society, 1996, 77(1): 19-40 doi: 10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2
    [4]
    ROCKEN C, ANTHES R, EXNER M, et al. Analysis and validation of GPS/MET data in the neutral atmosphere[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D25): 29849-29866 doi: 10.1029/97JD02400
    [5]
    WICKERT J, REIGBER C, BEYERLE G, et al. Atmosphere sounding by GPS radio occultation: first results from CHAMP[J]. Geophysical Research Letters, 2001, 28(17): 3263-3266 doi: 10.1029/2001GL013117
    [6]
    HAJJ G A, DE LA TORRE JUÁREZ M, IJIMA B A, et al. GPS radio occupations coming of age: spacecraft launches add two new instruments for climate monitoring[J]. Eos, Transactions American Geophysical Union, 2002, 83(4): 37 doi: 10.1029/2002EO000028
    [7]
    TAPLEY B D, BETTADPUR S, WATKINS M, et al. The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31(9): L09607 doi: 10.1029/2004GL019920
    [8]
    ANTHES R A, BERNHARDT P A, CHEN Y, et al. The COSMIC/FORMOSAT-3 mission: early results[J]. Bulletin of the American Meteorological Society, 2008, 89(3): 313-334 doi: 10.1175/BAMS-89-3-313
    [9]
    LOISELET M, STRICKER N, MENARD Y, et al. GRAS-Metop ’s GPS-based atmospheric sounder[J]. ESA Bulletin, 2000, 102: 38-44
    [10]
    VON ENGELN A, HEALY S, MARQUARDT C, et al. Validation of operational GRAS radio occultation data[J]. Geophysical Research Letters, 2009, 36(17): L17809 doi: 10.1029/2009GL039968
    [11]
    BI Y M, YANG Z D, ZHANG P, et al. An introduction to China FY3 radio occultation mission and its measurement simulation[J]. Advances in Space Research, 2012, 49(7): 1191-1197 doi: 10.1016/j.asr.2012.01.014
    [12]
    BAI W H, SUN Y Q, DU Q F, et al. An introduction to the FY3 GNOS instrument and mountain-top tests[J]. Atmospheric Measurement Techniques, 2014, 7(6): 1817-1823 doi: 10.5194/amt-7-1817-2014
    [13]
    SUN Y Q, BAI W H, LIU C L, et al. The FengYun-3 C radio occultation sounder GNOS: a review of the mission and its early results and science applications[J]. Atmospheric Measurement Techniques, 2018, 11(10): 5797-5811 doi: 10.5194/amt-11-5797-2018
    [14]
    ANTHES R, SCHREINER W. Six new satellites watch the atmosphere over Earth’s equator[J]. Eos, Transactions American Geophysical Union, 2019: 100 doi: 10.1029/2019EO131779
    [15]
    SCHREINER W S, WEISS J P, ANTHES R A, et al. COSMIC-2 radio occultation constellation: first results[J]. Geophysical Research Letters, 2020, 47(4): e2019GL086841 doi: 10.1029/2019GL086841
    [16]
    WANG X Y, SUN Y Q, DU Q F, et al. GNOS-Radio occultation sounder on board of Chinese FY3 satellites[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada: IEEE, 2014
    [17]
    廖蜜, 张鹏, 毕研盟, 等. 风云三号气象卫星掩星大气产品精度的初步检验[J]. 气象学报, 2015, 73(6): 1131-1140 doi: 10.11676/qxxb2015.072

    LIAO Mi, ZHANG Peng, BI Yanmeng, et al. A preliminary estimation of the radio occultation products accuracy from the Fengyun-3 C meteorological satellite[J]. Acta Meteorologica Sinica, 2015, 73(6): 1131-1140 doi: 10.11676/qxxb2015.072
    [18]
    王树志, 朱光武, 白伟华, 等. 风云三号C星全球导航卫星掩星探测仪首次实现北斗掩星探测[J]. 物理学报, 2015, 64(8): 089301 doi: 10.7498/aps.64.089301

    WANG Shuzhi, ZHU Guangwu, BAI Weihua, et al. For the first time Fengyun-3 C satellite-global navigation satellite system occultation sounder achieved spaceborne Bei Dou system radio occultation[J]. Acta Physica Sinica, 2015, 64(8): 089301 doi: 10.7498/aps.64.089301
    [19]
    LIAO M, ZHANG P, YANG G L, et al. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3 C[J]. Atmospheric Measurement Techniques, 2016, 9(2): 781-792 doi: 10.5194/amt-9-781-2016
    [20]
    LIAO M, HEALY S, ZHANG P. Processing and quality control of FY-3 C GNOS data used in numerical weather prediction applications[J]. Atmospheric Measurement Techniques, 2019, 12(5): 2679-2692 doi: 10.5194/amt-12-2679-2019
    [21]
    WEI J D, LI Y, ZHANG K F, et al. An evaluation of Fengyun-3 C radio occultation atmospheric profiles over 2015–2018[J]. Remote Sensing, 2020, 12(13): 2116 doi: 10.3390/rs12132116
    [22]
    BAI W D, SUN Y Q, XIA J M, et al. Validation results of maximum S4 index in F-layer derived from GNOS on FY3 C satellite[J]. GPS Solutions, 2019, 23(1): 19 doi: 10.1007/s10291-018-0807-x
    [23]
    杨光林, 孙越强, 白伟华, 等. 风云三号C星GNOS北斗掩星电离层探测初步结果[J]. 空间科学学报, 2019, 39(1): 36-45 doi: 10.11728/cjss2019.01.036

    YANG Guanglin, SUN Yueqiang, BAI Weihua, et al. Beidou navigation satellite system sounding of the ionosphere from FY-3 C GNOS: preliminary results[J]. Chinese Journal of Space Science, 2019, 39(1): 36-45 doi: 10.11728/cjss2019.01.036
    [24]
    BORMANN N, DUNCAN D, ENGLISH S, et al. Growing operational use of FY-3 data in the ECMWF system[J]. Advances in Atmospheric Sciences, 2021, 38(8): 1285-1298 doi: 10.1007/s00376-020-0207-3
    [25]
    CULVERWELL I D, LEWIS H W, OFFILER D, et al. The radio occultation processing package, ROPP[J]. Atmospheric Measurement Techniques, 2015, 8(4): 1887-1899 doi: 10.5194/amt-8-1887-2015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(241) PDF Downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return