On the Prediction of Geomagnetic Storm Following the Eruptive Event on the Solar Disk
-
摘要: CME是非重现性地磁暴的诱因,通过对太阳耀斑爆发活动的特征与可能引起地磁活动的CME进行统计分析,发现太阳耀斑的强度、位置、持续时间以及耀斑所伴随的太阳质子事件和行星际高能质子通量的增长与CME的特征及可能产生的地磁扰动有着密切的关系.在对数据分析的基础上,建立了基于人工神经网络的预报模式,对太阳耀斑爆发活动所引起的地磁扰动的发生及Ap指数进行了预报,取得了较好的结果.Abstract: Solar flares are well-known events on the solar disk while most of them being non-geoeffective. The key factors that makes them geo-effective are weather they have CME accompanied and the features of CME as well. But among the hundreds of CME, only few of them could cause significant geomagnetic disturbances, which mainly depends on whether they are towards to the earth. In this work, the relationship between the geomagnetic disturbances and the energetic proton flux (ACE-EPAM) data, together with the parameter of the solar flares that related to the CME was carefully investigated. The preliminary result is that, more than 90% of the enhancement of the particle flux followed by shock could be measured by ACE. But the correlation between flux of the particles and magnitudes of the geomagnetic disturbances was not much clear. Other factors that related to the characteristics of the CME have also to be taken into consideration. The position of the flare, which may affect the direction of the CME, the flare scale, which may decide the velocity, and the duration, which could relate to the magnetic field strength. But through statistical work, it was found that the relationship between the magnitudes of the geomagnetic disturbance Ap index and all those parameters mentioned above was non-liner, so neural network method was introduced to simulate the relation automatically. After the neural work being trained with the historical data range from 1986 to 2002, a model to predict the geomagnetic storms after the solar eruptive events was constructed. Test result showed that the error of the model comparing with the measurement was less than 20%.
-
Key words:
- Geomagnetic disturbance /
- CME /
- Energetic particle /
- Enhancement /
-
-
计量
- 文章访问数: 3232
- HTML全文浏览量: 146
- PDF下载量: 1189
-
被引次数:
0(来源:Crossref)
0(来源:其他)