留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

使用地磁脉动参数定量预报地球同步轨道相对论电子通量的建模研究

何甜 刘四清 沈华 龚建村

何甜, 刘四清, 沈华, 龚建村. 使用地磁脉动参数定量预报地球同步轨道相对论电子通量的建模研究[J]. 空间科学学报, 2013, 33(1): 20-27. doi: 10.11728/cjss2013.01.020
引用本文: 何甜, 刘四清, 沈华, 龚建村. 使用地磁脉动参数定量预报地球同步轨道相对论电子通量的建模研究[J]. 空间科学学报, 2013, 33(1): 20-27. doi: 10.11728/cjss2013.01.020
He Tian, Liu Siqing, Shen Hua, Gong Jiancun. Quantitative prediction of relativistic electron flux at geosynchronous orbit with geomagnetic pulsations parameters[J]. Chinese Journal of Space Science, 2013, 33(1): 20-27. doi: 10.11728/cjss2013.01.020
Citation: He Tian, Liu Siqing, Shen Hua, Gong Jiancun. Quantitative prediction of relativistic electron flux at geosynchronous orbit with geomagnetic pulsations parameters[J]. Chinese Journal of Space Science, 2013, 33(1): 20-27. doi: 10.11728/cjss2013.01.020

使用地磁脉动参数定量预报地球同步轨道相对论电子通量的建模研究

doi: 10.11728/cjss2013.01.020
详细信息
  • 中图分类号: P353

Quantitative prediction of relativistic electron flux at geosynchronous orbit with geomagnetic pulsations parameters

  • 摘要: 磁层超低频波(ULF波)对种子电子的加速机制是磁层相对论电子产生的一个重要机制, 而地磁脉动参数可以作为此机制的有效指标. 本文采用地磁脉动参数作为输入参数, 借鉴线性预测滤波器技术, 构建一个多参量非线性函数, 进而利用此函数以及卡尔曼滤波技术, 建立一个地球同步轨道相对论电子通量日积分值预报模式, 提供提前一天的预报值. 使用2004年数据对该模式进行训练, 预报结果的预报效率为0.73, 线性相关系数为0.85. 使用2005-2006年的数据对该模式进行测试, 预报值与实测值之间的线性相关系数为0.83, 预报效率为0.69, 相比Persistence模式具有较大提升, 与仿REFM模式的预报效率相当

     

  • [1] Nagai T. Space weather forecast: Prediction of relativistic electron intensity at synchronous orbit[J]. Geophys. Res. Lett., 1988, 15(5):425-428
    [2] Baker D N, McPherron R L, Cayton T E, et al. Linear prediction filter analysis of relativistic electron properties at 6.6Re[J]. J. Geophys. Res., 1990,95:15133-15140
    [3] Li X L. Variations of 0.7~6.0MeV electrons at geosynchronous orbit as a function of solar wind[J]. Space Weather, 2004, 2, S03006, doi: 10.1029/2003SW000017
    [4] Turner D L, Li X L. Quantitative forecast of relativistic electron flux at geosynchronous orbit based on low-energy electron flux[J]. Space Weather, 2008, 6, S05005, doi: 10.1029/2007SW000354
    [5] Sicard-Piet A, Bourdarie S, Boscher D, Friedel R H W, et al. A new international geostationary electron model: IGE-2006, from 1keV to 5.2MeV[J]. Space Weather, 2008, 6, S07003, doi: 10.1029/2007SW000368
    [6] Roth I, Temerin M, Hudson M K. Resonant enhancement of relativistic electron fluxes during geomagnetically active periods[J]. Ann. Geophys., 1999, 17:631-638
    [7] Meredith N P, Horne R B, Iles R H A, et al. Outer zone relativistic electron acceleration associated with substorm-enhanced whistler mode chorus[J]. J. Geophys. Res., 2002, 107(A7):29-36
    [8] Li Liuyuan, Can Jinbin, Zhou Guocheng. Acceleration of "Seed Electrons" by whistler turbulence near the geosynchronous orbit[J]. Chin. J. Geophys., 2004, 47(5):756-761. In Chinese (李柳元, 曹晋滨, 周国成. 地球同步轨道附近哨声湍流对撝肿拥 缱訑的加速[J]. 地球物理学报, 2004, 47(5):756-761)
    [9] O'BrienTP, LorentzenKR, Mann I R, et al. Energization of relativistic electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF and VLF acceleration[J]. J. Geophys. Res., 108(A8):11-18
    [10] Ukhorskiy A Y, Takahashi K, Anderson B J, et al. Impact of toroidal ULF waves on the outer radiation belt electrons[J]. J. Geophys. Res., 2005, 110, A10202, doi: 10.1029/2005JA011017
    [11] Li L, Cao J B, Zhou G C. Combined acceleration of electrons by whistler-mode and compressional ULF turbulence near the geosynchronous orbit[J]. J. Geophys. Res., 2005, 110(A3):8-15
    [12] He T, Liu S Q, Xue B S, et al. Study on a forcasting method of the relativistic electron flux at geostationary orbit using geomagnetic pulsation data[J]. Chin. J. Geophys., 2009, 52(10):2419-2427. In Chinese (何甜, 刘四清, 薛炳森, 等. 利用地磁脉动预报地球同步轨道相对论电子通量方法的研究[J]. 地球物 理学报, 2009, 52(10):2419-242)
    [13] Degtyarev V I, Kharchenko I P, Potapov A S, et al. Qualitative estimation of magnetic storm efficiency in producing relativistic electron flux in the Earth's outer radiation belt using geomagnetic pulsations data[J]. Adv. Space Res., 2008, doi: 10.1016/j.asr.2008.07.004
    [14] Degtyarev V I, Kharchenko I P, Potapov A S, et al. The relation between geomagnetic pulsations and an increase in the fluxes of geosynchronous relativistic electrons during geomagnetic storms[J]. Geomag. Aeron., 2010, 50(7):885-893
    [15] Vassiliadis D, Klimas A J, Kanekal S G, et al. Long-term-average, solar cycle, and seasonal response of magnetospheric energetic electrons to the solar wind speed[J]. J. Geophys. Res., 2002, 107(A11), 1383, doi: 10.1029/2001-JA000506
    [16] Vassiliadis D, Fung S F, Klimas A J. Solar, interplanetary, and magnetospheric parameters for the radiation belt energetic electron flux[J]. J. Geophys. Res., 2005, 110, A04021, doi: 10.1029/2004JA010443
    [17] Rigler E J, Baker D N, Weigel R S, et al. Adaptive linear prediction of radiation electrons using the Kalman filter[J]. Space Weather, 2004, 2, S03003, doi: 10.1029/2003SW000036
    [18] Perry K L, Ginet G P, Ling A G, et al. Comparing geosynchronous relativistic electron prediction models[J]. Space Weather, 2010, 8, S12002, doi: 10.1029/2010SW000581
    [19] Kozyreva O, Pilipenko V, Engebretson M J, et al. In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons[J]. Planet. Space Sci., 2007, 55:755-769
  • 加载中
计量
  • 文章访问数:  2470
  • HTML全文浏览量:  53
  • PDF下载量:  972
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-16
  • 修回日期:  2012-12-08
  • 刊出日期:  2013-01-15

目录

    /

    返回文章
    返回