留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Directional filtering due to mesospheric wind shear on the propagation of acoustic-gravity waves

Yu Yonghui Chen Wei Wang Yachong

Yu Yonghui, Chen Wei, Wang Yachong. Directional filtering due to mesospheric wind shear on the propagation of acoustic-gravity waves[J]. 空间科学学报, 2013, 33(1): 53-62. doi: 10.11728/cjss2013.01.053
引用本文: Yu Yonghui, Chen Wei, Wang Yachong. Directional filtering due to mesospheric wind shear on the propagation of acoustic-gravity waves[J]. 空间科学学报, 2013, 33(1): 53-62. doi: 10.11728/cjss2013.01.053
Yu Yonghui, Chen Wei, Wang Yachong. Directional filtering due to mesospheric wind shear on the propagation of acoustic-gravity waves[J]. Chinese Journal of Space Science, 2013, 33(1): 53-62. doi: 10.11728/cjss2013.01.053
Citation: Yu Yonghui, Chen Wei, Wang Yachong. Directional filtering due to mesospheric wind shear on the propagation of acoustic-gravity waves[J]. Chinese Journal of Space Science, 2013, 33(1): 53-62. doi: 10.11728/cjss2013.01.053

Directional filtering due to mesospheric wind shear on the propagation of acoustic-gravity waves

doi: 10.11728/cjss2013.01.053 cstr: 32142.14.cjss2013.01.053
基金项目: Supported by the National Natural Science Foundation of China (40874100, 41174128)
详细信息
  • 中图分类号: P353

Directional filtering due to mesospheric wind shear on the propagation of acoustic-gravity waves

  • 摘要: Gravity waves with periods close to the Brunt-Väisälä period of the upper troposphere are often observed at mesopause altitudes as short period, quasi-monochromatic waves. The assumption that these short period waves originate in the troposphere may be problematic because their upward propagation to the mesosphere and lower thermosphere region could be significantly impeded due to an extended region of strong evanescence above the stratopause. To reconcile this apparent paradox, an alternative explanation is proposed in this paper. The inclusion of mean winds and their vertical shears is sufficient to allow certain short period waves to remain internal above the stratopause and to propagate efficiently to higher altitudes. A time-dependent numerical model is used to demonstrate the feasibility of this and to determine the circumstances under which the mesospheric wind shears play a role in the removal and directional filtering of short period gravity waves. Finally this paper concludes that the combination of the height-dependent mean winds and the mean temperature structure probably explains the existence of short period, quasi-monochromatic structures observed in airglow images of mesopause region.

     

  • [1] Hines C O. Internal atmospheric gravity waves at ionospheric heights[J]. Can. J. Phys., 1960, 38:1441-1481
    [2] Fritts D C, Alexander M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys.,2003,41(1):1003, doi: 10.1029/2001RG000106
    [3] Walterscheid R L, Schubert G, Brinkman D G. Small-scale gravity waves in the upper mesosphere and lower thermosphere generated by deep tropical convection[J]. J. Geophys. Res., 2001, 106(D23):31825-31832
    [4] Snively J B, Pasko V P. Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes[J]. Geophys. Res. Lett., 2003, 30(24):2254-2258
    [5] Yu Y, Hickey M P. Time-resolved ducting of atmospheric acoustic-gravity waves by analysis of the vertical energy flux[J]. Geophys. Res. Lett., 2007, 34:L02821
    [6] Yu Y, Hickey M P. Simulated ducting of high-frequency atmospheric gravity waves in the presence of background winds[J]. Geophys. Res. Lett., 2007, 34:L11103
    [7] Pierce A D, Coroniti S C. A mechanism for the generation of acoustic-gravity waves during thunderstorm formation[J]. Nature, 1966, 210(5042):1209-1210
    [8] Yu Y, Hickey M P. Numerical modeling of a gravity wave packet ducted by the thermal structure of the atmosphere[J]. J. Geophys. Res., 2007, 112:A06308,doi: 10.1029/2006JA012092
    [9] Manzini E, Hamilton K. Middle atmospheric traveling waves forced by latent and convective heating[J]. J. Atmos. Sci., 1993, 50:2180-2200
    [10] Walterscheid R L, Hecht J H, Vincent R A, Reid I M, Woithe J, Hickey M P. Analysis and interpretation of airglow and radar observations of quasi-monochromatic gravity waves in the upper mesosphere and lower thermosphere over Adelaide, Australia[J]. J. Atmos. Sol. Terr. Phys., 1999, 61:461-478
    [11] Hecht J H, Walterscheid R L, Hickey M P, Franke S J. Climatology and modeling of quasi-monochromatic atmospheric gravity waves observed over Urbana Illinois[J]. J. Geophys. Res., 2001, 106(D6):5181-5196
    [12] Yamada Y, Fukunishi H, Nakamura T, Tsuda T. Breaking of small-scale gravity waves and transition to turbulence observed in OH airglow[J]. Geophys. Res. Lett., 2001,28(11):2153-2156
    [13] Hines C O, Reddy C A. On the propagation of atmospheric gravity waves through regions of wind shear[J]. J. Geophys. Res., 1967, 72:1015-1034
    [14] Yu Y, Hickey M P, Liu Y. A numerical model characterizing internal gravity wave propagation into the upper atmosphere[J]. Adv. Space Res., 2009, 44(7):836-846
    [15] Hickey M P, Cole K D. A quartic dispersion equation for internal gravity waves in the thermosphere[J]. J. Atmos. Sol. Terr. Phys., 1987, 49(9):889-899
    [16] Walterscheid R L, Hickey M P. One-gas models with height-dependent mean molecular weight: Effects on gravity wave propagation[J]. J. Geophys. Res., 2001,106(A12):28831-28840
    [17] Strobel D F. Constraints on gravity wave induced diffusion in the middle atmosphere[J]. Pure Appl. Geophys., 1989, 130:533-546
    [18] Hocking W K. Turbulence in the region 80--120km[J]. Adv. Space Res., 1987, 7(10):171-181
    [19] Rees M H. Physics and Chemistry of the Upper Atmosphere[M]. Cambridge: Cambridge University Press, 1989
    [20] Walterscheid R L, Schubert G. Nonlinear evolution of an upward propagating gravity wave: Overturning, convection, transience and turbulence[J]. J. Atmos. Sci.,1990, 47(1):101-125
    [21] Yu Y, Liu Y. Cylindrical gravity waves generated by thunderstorm driven sources at tropospheric altitudes[J]. Chin. J. Space Sci., 2011, 31(4):467-473
    [22] Einaudi F, Hines C O. WKB approximation in application to acoustic-gravity waves[J]. Can. J. Phys., 1971, 48:1458-1471
    [23] Hedin A E. Extension of the MSIS thermosphere model into the middle and lower atmosphere[J]. J. Geophys. Res.,1991, 96:1159-1172
    [24] Hedin A E, Fleming E L, Manson A H, et al. Empirical wind model for the upper, middleand lower atmosphere[J]. J. Atmos. Terr. Phys., 1996,58:1421-1447
    [25] Eliassen A, Palm E. On the transfer of energy in stationary mountain waves[J]. Geofysiske Publ., 1961, 22:1-23
    [26] Francis S H. Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic, dissipative atmosphere[J]. J. Geophys. Res., 1973, 78:2278-2301
    [27] Del Genio A D, Schubert G., Straus J M. Characteristics of acoustic-gravity waves in a diffusively separated atmosphere[J]. J. Geophys. Res., 1979, 84:1865-1879
    [28] Forbes J M, Zhang X, Ward W, Talaat E R. Climatological features of mesosphere and lower thermosphere stationary planetary waves within ±40° latitude[J]. J. Geophys. Res., 2002, 107(D17):4322, doi: 10.1029/2001JD001232
    [29] Taylor M J, Ryan E H, Tuan T F, Edwards R. Evidence of preferential directions for gravity wave propagation due to wind filtering in the middle atmosphere[J]. J. Geophys. Res., 1993, 98(A4):6047-6057
    [30] Fritts D C, Vadas S L. Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds[J]. Ann. Geophys., 2008, 26:3841-3861
  • 加载中
计量
  • 文章访问数:  2497
  • HTML全文浏览量:  93
  • PDF下载量:  1306
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2011-11-03
  • 修回日期:  2012-10-18
  • 刊出日期:  2013-01-15

目录

    /

    返回文章
    返回