留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳表面水平运动驱动的磁圈与开放磁场重联的模拟研究

陈文磊 何建森 吴式灿 杨利平 王爱华 张磊 涂传诒

陈文磊, 何建森, 吴式灿, 杨利平, 王爱华, 张磊, 涂传诒. 太阳表面水平运动驱动的磁圈与开放磁场重联的模拟研究[J]. 空间科学学报, 2013, 33(3): 231-239. doi: 10.11728/cjss2013.03.231
引用本文: 陈文磊, 何建森, 吴式灿, 杨利平, 王爱华, 张磊, 涂传诒. 太阳表面水平运动驱动的磁圈与开放磁场重联的模拟研究[J]. 空间科学学报, 2013, 33(3): 231-239. doi: 10.11728/cjss2013.03.231
Chen Wenlei, He Jiansen, WU S T, Yang Liping, Wang Aihua, Zhang Lei, Tu Chuanyi. Study of magnetic reconnection between closed loops and open magnetic field driven by horizontal flows on solar surface[J]. Chinese Journal of Space Science, 2013, 33(3): 231-239. doi: 10.11728/cjss2013.03.231
Citation: Chen Wenlei, He Jiansen, WU S T, Yang Liping, Wang Aihua, Zhang Lei, Tu Chuanyi. Study of magnetic reconnection between closed loops and open magnetic field driven by horizontal flows on solar surface[J]. Chinese Journal of Space Science, 2013, 33(3): 231-239. doi: 10.11728/cjss2013.03.231

太阳表面水平运动驱动的磁圈与开放磁场重联的模拟研究

doi: 10.11728/cjss2013.03.231 cstr: 32142.14.cjss2013.03.231
基金项目: 国家自然科学基金项目资助(41174148, 40890162, 40931055)
详细信息
  • 中图分类号: P353

Study of magnetic reconnection between closed loops and open magnetic field driven by horizontal flows on solar surface

  • 摘要: 太阳大气的诸多观测事件(如耀斑、喷流等)均被归因于磁重联产生的能量转换. 近年来, 关于太阳风起源, 有研究提出了磁重联使闭合磁圈开放为太阳风供应物质的新模式. 在该模式中, 闭合磁圈被光球超米粒组织对流携带, 向超米粒边界运动, 与位于边界的开放磁场相碰撞进而发生磁重联. 该模式中磁重联的驱动及其效应是本文的研究目标. 磁流体力学(MHD)数值模拟是研究太阳大气磁重联物理过程的重要途径. 本文建立了一个二维MHD数值模型, 结合太阳大气温度和密度的分层分布, 在超米粒组织尺度上模拟了水平流动驱动的闭合磁圈与开放磁场的重联过程. 通过对模拟结果的定量分析, 认为磁重联确实能够将闭合磁圈的物质释放, 进而供应给新的开放磁结构并产生向上流动. 该结果为进一步模拟研究太阳风初始外流奠定了基础.

     

  • [1] Priest E, Forbes T. {Magnetic Reconnection}[M]. Cambridge: Cambridge University Press, 2000
    [2] Shibata K, Nakamura T, Matsumoto T, et al. Chromospheric anemone jets as evidence of ubiquitous reconnection[J]. Science, 2007, 318(5856):1591-1594
    [3] De Pontieu B, McIntosh S W, Carlsson M, et al. The origins of hot plasma in the solar corona[J]. Science, 2011, 331(6013):55-58
    [4] He J S, Marsch E, Tu C Y, Tian H. Excitation of kink waves due to small-scale magnetic reconnection in the chromosphere[J]. Astrophys. J., 2009, 705:L217
    [5] Chae J, Goode P R, Ahn K, et al. New solar telescope observations of magnetic reconnection occurring in the chromosphere of the quiet sun[J]. Astrophys. J., 2010, 713(1):L6-L10
    [6] Cirtain J W, Golub L, Lundquist L, et al. Evidence for Alfvén waves in solar x-ray jets[J]. Science, 2007, 318:1580-1588
    [7] He J S, Marsch E, Curdt W, Tian H, Tu C Y, Xia L D, Kamio S. Magnetic and spectroscopic properties of supergranular-scale coronal jets and erupting loops in polar coronal hole[J]. Astron. Astrophys., 2010, 519, doi: 10.1051/0004-6361/201014709
    [8] McIntosh S W, Innes D E, De Pontieu B, Leamon R J. STEREO observations of quasi-periodically driven high velocity outflows in polar plumes[J]. Astron. Astrophys., 2010, 510, doi: 10.1051/0004-6361/200913699
    [9] Tian H, McIntosh S W, Habbal S R, He J S. Observation of high-speed outflow on plume-like structures of the quiet Sun and coronal holes with solar dynamics observatory/atmospheric imaging assembly[J]. Astrophys. J., 2011, 736(2), doi: 10.1088/0004-637X/736/2/130
    [10] Sakao T, Kano R, Narukage N, et al. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind[J]. Science, 2007, 318(5856):1585
    [11] He J S, Marsch E, Tu C Y, Guo L J, Tian H. Intermittent outflows at the edge of an active region-a possible source of the solar wind[J]. Astron. Astrophys., 2010, 516, doi: 10.1051/0004-6361/200913712
    [12] Guo L J, Tian H, He J S. Quasi-periodic outflows observed by the X-Ray Telescope onboard Hinode in the boundary of an active region[J]. Res. Astron. Astrophys., 2010, 10(12):1307
    [13] Tian H, McIntosh S W, De Pontieu B. The spectroscopic signature of quasi-periodic upflows in active region timeseries[J]. Astrophys. J., 2011, 727(2):L37, doi: 10.1088/2041-8205/727/2/L37
    [14] Tian H, McIntosh S W, De Pontieu B, et al. Two components of the solar coronal emission revealed by extreme-ultraviolet spectroscopic observations[J]. Astrophys. J., 2011, 738, doi: 10.1088/0004-637X/738/1/18
    [15] Wu S T, Wang S, Zheng H N. MHD Simulation of small and global scale reconnection processes[J]. Adv. Space Res., 2000, 26(3):529-533
    [16] Yokoyama T, Shibata K. Magnetic reconnection as the origin of X-ray jets and Hα surges on the Sun[J]. Nature, 1995, 375(6526):42-44
    [17] Moreno-Insertis F, Galsgaard K, Ugarte-Urra I. Jets in coronal holes: Hinode observations and three-dimensional computer modeling[J]. Astrophys. J., 2008, 673(2):L211-L214
    [18] Chen P F, Shibata K. An emerging flux trigger mechanism for coronal mass ejections[J]. Astrophys. J., 2000, 545(1):524-531
    [19] Chen Y, Hu Y Q, Sun S J. Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection[J]. Astrophys. J., 2007, 665(2):1421-1427
    [20] Santos J C, Büchner J, Madjarska M S, Alves M V. On the relation between DC current locations and an EUV bright point: A case study[J]. Astron. Astrophy., 2008, 490(1):345-352
    [21] Peter H, Gudiksen B V, Nordlund A. Forward modeling of the corona of the sun and solar-like stars: from a three-dimensional magnetohydrodynamic model to synthetic extremeultraviolet spectra[J]. Astrophys. J., 2006, 638(2):1086-1100
    [22] Innes D E, Tóth G. Simulations of small-scale explosive events on the Sun[J]. Solar Phys., 1999, 185:127-141
    [23] Ding J Y, Madjarska M S, Doyle J G, et al. Magnetic reconnection resulting from flux emergence: implications for jet formation in the lower solar atmosphere[J]. Astron. Astrophys., 2011, 535, A95, 10, doi: 10.1051/0004-6361/201117515
    [24] Axford W I, McKenzie J F. The solar wind, Cosmic Winds and the Heliosphere[M]. Tucson, USA: Arizona University Press. 31
    [25] Tu C Y, Zhou C, Marsch E, Xia L D, Zhao L, Wang J X, Wilhelm K. Solar wind origion in coronal funnels[J]. Science, 2005, 308(5721):519-523
    [26] Tian H, Potts H E, Marsch E, Attie R, He J S. Horizontal supergranule-scale motions inferred from TRACE ultraviolet observations of the chromosphere[J]. Astron. Astrophys., 2010, 519, A58, 10, doi: 10.1051/0004-6361/200913254
    [27] Gary G A. Plasma beta above a solar active region: rethinking the paradigm[J]. Solar Phys., 2001, 203:71-86
    [28] Axford W I, McKenzie J F. The origin of high-speed solar wind streams[G]//Solar Wind Seven, Cospar Colloquia Series (Vol. 3). Oxford U K: Pergamon Press, 1992. 1-3
    [29] Harten A. High resolution schemes for hyperbolic conservation laws. J. Comput Phys., 1983, 49(3):357-393
    [30] Tóth G, Odstrcil D. Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems[J]. J. Comput Phys., 1996, 128(1):82-100
    [31] Godunov S K. Symmetric form of the equations of magnetohydrodynamics[J]. Numer. Meth. Mech. Contin. Med., 1972, 1:26-34. (In Russian)
    [32] Godunov S K. An interesting class of quasilinear systems[J]. Soviet Math. Dokl., 1961, 2:947-949
    [33] Bingert S, Peter H. Intermittent heating in the solar corona employing a 3D MHD model[J]. Astron. Astrophys., 2011, 530, A112, 12, doi: 10.1051/0004-6361/201016019
  • 加载中
计量
  • 文章访问数:  2740
  • HTML全文浏览量:  155
  • PDF下载量:  1247
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2012-04-11
  • 修回日期:  2012-10-11
  • 刊出日期:  2013-05-15

目录

    /

    返回文章
    返回