Trajectory method of 3D test particles in global transport in magnetosphere
-
摘要: 根据磁层粒子动力学理论, 通过偶极磁场模型验证利用三维试验粒子轨道方法模拟近地球区(r < 8Re)带电粒子运动特征的可靠性. 在此基础上, 以太阳风和磁层相互作用的全球MHD模拟结果为背景, 利用三维试验粒子轨道方法, 对非磁暴期间南向行星际磁场背景下太阳风离子注入磁层的情形进行数值模拟, 并对北向行星际磁场背景下太阳风离子注入极尖区以及内磁层的几种不同情形进行了单粒子模拟. 模拟结果反映了南向和北向行星际磁场离子向磁层的几种典型输入过程, 揭示出行星际磁场南向时太阳风粒子在磁层内密度分布的晨昏不对称性以及其在磁鞘和磁层内的大致分布, 并得出统计规律. 模拟结果与理论预测和观测结论相一致, 且通过数值模拟发现, 行星际磁场北向时靠近极尖区附近形成的非典型磁镜结构对于能量粒子经由极尖区注入环电流区域过程有重要的影响和作用.Abstract: Based on the theory of magnetospheric particle dynamics and the trajectory method of 3D test particles, we firstly verified charged particles' dynamic characters under a dipole field model for the inner magnetosphere situation (r < 8Re). Then, using a global MHD model as the magnetospheric background, the trajectory method of 3D test particles is employed to investigate the injection of solar wind ions into the magnetosphere during the southward IMF, and to simulate several different typical situations of the injection of the particle into the cusp region during the northward IMF. The simulation results not only reveals the possible processes of the particle injection into the cusp region for northward IMF, but also indicates the general distribution of the particles originally from the solar wind in the magnetosheath and magnetosphere, and the dawn-dusk asymmetry of the particles' density during the southward IMF. The simulation results are coincident with the theory and observation of magnetospheric dynamics. And for the first time, it is indicated by numerical simulation that an atypical magnetic mirror near the polar cusp region plays an important role in the particles' injection from the cusp region to ring current region during northward IMF.
-
[1] Moore T E, Fok M C, Chandler M O, et al. Plasma sheet and (nonstorm) ring current formation from solar and polar wind sources[J]. J. Geophys. Res., 2005, 110(A2), A02210 [2] Delcourt C D, Moore T E, Chappell C R. Contribution of low-energy ionospheric protons to the plasma sheet[J]. J. Geophys. Res., 1994, 99(A4), 5681C5690 [3] Powell K G, Philip L R, Linde T J, Gombosi T I, DeZeeuw K L. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 154:154 [4] Williams D J. Dynamics of the Earth's ring current: Theory and observation[J]. Space Sci. Rev., 1985, 42:375-396 [5] Tu Chuanyi. Solar-terrestrial Space Physics[M]. Beijing: Science Press, 1988. In Chinese (涂传诒. 日地空间物理学[M]. 北京: 科学出版社, 1988) [6] Ronglan Xu, Lei Li. Magnetospheric Dynamics[M]. Beijing: Science Press, 2006. In Chinese (徐荣栏, 李磊. 磁层粒子动力学[M]. 北京: 科学出版社, 2006) [7] Ding Li. Test Particle Simulations of Global Transport in Earth's Magnetosphere[D]. Alberta: University of Alberta, 2006 [8] Ashour-Abdalla M, Berchem J, Büchner J, Zelenyi L M. Shaping of the magnetotail from the mantle: Global and local structuring[J]. J. Geophys. Res., 1993, 98:5651 [9] Song P, DeZeeuw D L, Gombosi T I, Groth C P T, Powell K G. A numerical study of solar wind-magnetosphere interaction for northward interplanetary magnetic field[J]. J. Geophys. Res., 1999, 104(12):28361-28378 [10] Li X, Baker D N, Temerin M, Reeves G D, Belian R D. Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms[J]. Geophys. Res. Lett., 1998, 25(20):3763-3766 [11] Li X, Sarris T E, Baker D N, et al. Simulation of energetic particle injections associated with a substorm on August 27, 2001[J]. Geophys. Res. Lett.}, 2003, 30(1):1004 [12] Huang Zhaoyan, Han Jianwei. Calculating method on charged particles motion in the near-Earth region[J]. Chin. J. Space Sci., 2007, 27(5):367-373. In Chinese (黄朝艳, 韩建伟. 带电粒子在近地球区运动的计算方法[J]. 空间科学 学报, 2007, 27(5):367-373) [13] Tang Pengju, Xu Ronglan, Wang Chi. Simulation on the penetration of energetic particles into the magnetosphere[J]. Chin. J. Space Sci., 2008, 28(4):283-297. In Chinese (唐鹏举, 徐荣栏, 王赤. 能量粒子进入磁层的数值模拟研究[J]. 空间科学学报, 2008, 28(4):283-297) [14] Chen F F. Introduction to Plasma Physics and Controlled Fusion[M]. New York: Plenum, 1984 [15] Lee D Y, Hwang J A, Lee E S, et al. How are storm time injections different from nonstorm time injections[J]. J. Atmos. Solar-Terr. Phys., 2004, 66(18):1715-1725 [16] Toth G, Kovacs D, Hansen K C, et al. Three-dimensional MHD simulations of the magnetosphere of Uranus[J]. J. Geophys. Res., 2004, 109, A11210, doi:10.1029/ 2004JA010406. [17] DeZeeuw D L, Sazykin S, Wolf R A, et al. Coupling of a global MHD code and an inner magnetospheric model: Initial results[J]. J. Geophys. Res., 2004, 109, A12219, doi: 10.1029/2003JA010366 [18] Oner K, Ceren E, Kaymaz Z. Spatial variation of Joule heating and its relationship with the motion of polar cap boundary[C]//5th International Conference on Recent Advances in Space Technologies (RAST). Istanbul: IEEE, 2011. 581-583 [19] Samsonov A A, Sibeck D G, Imber J. MHD simulation for the interaction of an interplanetary shock with the Earth's magnetosphere[J]. J. Geophys. Res., 2007, 112, A12220, doi: 10.1029/2007JA012627 [20] Wang M, Lu J Y, Liu Z Q, Pei S X. Dependence of magnetic field just inside the magnetopause on subsolar standoff distance: Global MHD results[J]. Chin. Sci. Bull., 2012, 57:1438-1442 [21] Lu J Y, Liu Z Q, Kabin K, et al. Three dimensional shape of the magnetopause: Global MHD results[J]. J. Geophys. Res., 2011, 116, A09237, 21PP, doi:10.1029/ 2010JA016418 [22] Rae I J, Kabin K, Lu J Y, et al. Comparison of the Open-Closed Separatrix in a Global Magnetospheric Simulation with Observations: the role of the ring current[J]. J. Geophys. Res., 2010, 115, doi: 10.1029/2009JA015068 [23] Simon Wing, Patrick T. Newell. 2D plasma sheet ion density and temperature profiles for northward and southward IMF[J]. Geophys. Res. Lett., 2002, 29(9): 1307 [24] Song P, Holzer T, Russell C T, Wang Z. Modeling the low latitude boundary layer with reconnection entry[J]. Geophys. Res. Lett., 1994, 21:625-628 [25] Reiff P H, Hill T W, Burch J L. Solar Wind Plasma Injection at the Dayside Magnetospheric Cusp[J]. J. Geophys. Res., 1977, 82(4):479-491 [26] Wang Jingsong, Lü Jianyong. Space Weather[M]. Beijing: China Meteorological Press, 2010. In Chinese (王劲松, 吕建永. 空间 天气学[M]. 北京: 气象出版社, 2010) [27] Shen Chao, Liu Zhenxing, Cao Jinbin, et al. The effect of plasma sheet fast flows on substorms[J]. Chin. J. Space Sci., 2000, 20(3):35. In Chinese (沈超, 刘振兴, 曹晋滨, 等. 磁尾等离子体片对流对亚暴的影响[J]. 空间科学学报, 2000, 20(3):35) [28] Cummings W D, Barfield J N, Coleman P J. Magnetospheric substorms observed at she Synchronous orbit[J]. J. Geophys. Res., 1968, 73(21):6687-6698 [29] Buneman O, Nishikawa K I, Neubert T. Solar wind-ma-gneto-sphere interaction as simulated by a 3-D em particle code[J]. Astrophys. Space Sci., 1995, 227(1/2):265-276 [30] Terasawa T, Fujimoto M, Mukai T, et al. Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration[J]. Geophys. Res. Lett., 1997, 24:935 -
-
计量
- 文章访问数: 3029
- HTML全文浏览量: 145
- PDF下载量: 1017
-
被引次数:
0(来源:Crossref)
0(来源:其他)