Derivation of TEC and GPS hardware delay based on dual-frequency GPS observations
-
摘要: 利用全球定位系统(Global Positioning System,GPS)的双频观测数据反演得到电离层的总电子含量(Total Electron Content,TEC),使得广域甚至全球范围高时空分辨率的电离层观测研究成为可能,但由于GPS卫星和接收机对信号的硬件延迟可导致TEC测量系统偏差,因此,需要探索反演TEC并估测GPS卫星与接收机硬件延迟的有效算法.本文根据电离层电波传播理论,阐述了基于双频GPS观测提取电离层TEC的方法,给出TEC与硬件延迟的基本关系.综合研究了TEC与硬件延迟的反演方法,进行分析与归纳分类,在此基础上提出了有待深入研究的问题.Abstract: The ground-based GPS receivers and hence networks enable studies of the ionosphere on a large regional or global scale by measuring the ionospheric TEC from dual-frequency GPS observations. However, originated in the hardware delay of the GPS satellite and receivers, a systematic bias affects the accuracy of the TEC derivation greatly. For accurate estimation of TEC, satellite and receiver instrumental biases should be removed from TEC measurements properly. This paper gives a comprehensive review of the algorithms on TEC and GPS hardware delays derivations. Starting from ionospheric radio wave propagation, the paper describes how the TEC is related with hardware delays. Then the TEC derivation methods are analyzed, evaluated and categorized into 3 main types. Finally, some suggestions are provided for further research on derivation of TEC and hardware delay.
-
Key words:
- GPS /
- Ionosphere /
- TEC /
- Hardware delay
-
[1] Mannucci A, Wilson B, Yuan D, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements[J]. Radio Sci., 1998, 33(3):565-582 [2] Liu Jingnan. Principles and Methods of Wide Area Differential GPS[M]. Wuhan: Surveying and Mapping Press. 1999. In Chinese (刘经南. 广域差分GPS原理和方法[M]. 武汉: 测绘出版社, 1999) [3] Lanyi G E, Roth T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations[J]. Radio Sci., 1988, 23(4):483-492 [4] Coco D S, Coker C, Dahlke S R, Clynch J R. Variability of GPS satellite differential group delay biases, aerospace and electronic systems[J]. IEEE Trans., 1991, 27(6):931-938 [5] Sardon E, Rius A, Zarraoa N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations[J]. Radio Sci., 1994, 29(3):577-586 [6] Iijima B, Harris I, Ho C, et al. Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data[J]. J. Atmos. Solar-Terr. Phys., 1999, 61(16):1205-1218 [7] Rideout W, Coster A. Automated GPS processing for global total electron content data[J]. GPS Solut., 2006, 10(3):219-228 [8] Ma G, Maruyama T. Derivation of TEC and estimation of instrumental biases from GEONET in Japan[J]. Ann. Geophys., 2003, 21:2083-2093 [9] Cai Changsheng, Gao Jingxiang, Li Zhenghang. Monitoring seasonal variarions of ionospheric TEC using GPS measurements[J]. Geomat. Inf. Sci. Wuhan Univ., 2011, 36(10):1218-1221. In Chinese (蔡昌盛, 高井祥, 李征航. 利用GPS监测电离层总电子含量的季节性变化[J]. 武汉大学学报:信息科学版, 2011, 36(10):1218-1221) [10] Gao Wei. Derivation of GPS-TEC and Instrumental Biases in the Equatorial Anomaly Region[D]. Beijing: University of the Chinese Academy of Sciences, 2008. In Chinese (高伟, 赤道异 常区电离层GPS-TEC与系统硬件偏差反演[D]. 北京: 中国科学院大学, 2008) [11] Ma G, Gao W, Li J, et al. Estimation of GPS instrumental biases from small scale network[J]. Adv. Space Res., 2013, doi.org/10.1016/j.asr.2013.01.008 [12] Kaplan E D, Hegarty C J. Understanding GPS: Principles and Applications[M]. Washington: Artech House Publishers, 2006 [13] Li Qiang, Feng Man, Zhang Donghe, et al. Methods of estimation of GPS instrumental bias from single site's GPS data and comparative study of results[J]. J Peking Univ: Nat. Sci., 2007, 2(2):37-44. In Chinese (李强, 冯曼, 张东和, 等. 基于单站GPS数据的GPS系统硬件延迟估算方法及结果比较[J]. 北京大学学报:自然科学版, 2007, 2(2):37-44) [14] Chang Qing, Zhang Donghe, Xiao Zuo, Zhang Qishan. A method for estimation GPS instrumental biases and its application in TEC calculation[J]. Chin. J. Geophys., 2001, 40(5):596-601. In Chinese (常青, 张东和, 萧佐, 张其善. GPS系统硬件延迟估计方法及其在TEC计算中的应用[J]. 地球物理学报, 2001, 40(5):596-601) [15] Li Qiang, Feng Man, Zhang Donghe, Xiao Zuo, Shi Liqin. Methods of estimation of GPS instrumental bias from single site's GPS data and comparative study of results[J]. J. Peking Univ.: Nat. Sci., 2008, 44(1):149-156. In Chinese (李强, 冯曼, 张东和, 萧佐, 师立勤. 基于单站GPS数据的GPS系统硬件延迟估算方法及结果比较[J]. 北京大学学报:自然科学版, 2008, 44(1):149-156) [16] Huang Zhi, Yuan Hong, Wan Weixing. Test of GPS TEC hardware biases estimating methods[J]. Chin. J. Radio Sci., 2003, 18(4):472-476. In Chinese (黄智, 袁洪, 万卫星. GPSTEC硬件偏差估计方法的有效性[J]. 电波 科学学报, 2003, 18(4):472-476) [17] Schaer S. Mapping and predicting the Earth's ionosphere using the Global Positioning System[J]. Geod.-Geophys. Arb. Schiweiz, 1999, 59: 01 [18] Feltens J. Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre[J]. Space Weather, 2001, 5, S12002, doi: 10.1029/2006SW000294 [19] Wilson B D, Mannucci A J, Edwards C D. Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers[J]. Radio Sci., 1995, 30(3):639-648 [20] Li Z, Yuan Y, Li H, et al. Two-step method for the determination of the differential code biases of COMPASS satellites[J]. J. Geod., 2012, 86:1059-1076, doi: 10.1007/s00190-012-0565-4 [21] Ovstedal O. Absolute positioning with single-frequency GPS receivers[J]. GPS Solut., 2002, 5(4):33-44 [22] Otsuka Y, Ogawa T, Saito A, et al. A new technique for mapping of total electron content using GPS network in Japan[J]. Earth Planets Space, 2002, 54:63-70 [23] Li Zhenghang, Huang Jinsong. GPS Surveying and Date Processing[M]. Wuhan: Wuhan University Press. 2005. In Chinese (李征航, 黄劲松. GPS测量与数据处理[M]. 武汉: 武汉大学出版社, 2005) [24] Zhang Hongping, Shi Chuang, Tang Weiming. United solution to polynomial VTEC modeling and DCB analysis using ground-based GPS observations[J]. Geom. Inf. Sci. Wuhan Univ., 2008, 33(8):805-809. In Chinese (章红平, 施闯, 唐卫明. 地基GPS区域电离层多项式模型与硬件 延迟统一解算分析[J]. 武汉大学学报: 信息科学版, 2008, 33(8):805-809) [25] Zhang D, Zhang W, Li Q, et al. Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes[J]. Ann. Geophys., 2010, 28(8):1571-1580 [26] Jin R, Jin S, Feng G. M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases[J]. GPS Solut., 2012, 16:541-548 [27] Gao Y, Heroux P, Liao X, et al. GPS instrumental bias between receivers[C]//ION 55th Annual Meeting. Cambridge: Institute of Navigation, 1999 [28] Feltens J. The activities of the ionosphere working group of the International GPS Service (IGS)[J]. GPS Solut., 2003, 7(1):41-46 [29] Rao G S. GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modeling[J]. J. Earth Syst. Sci., 2007, 116(5):407-411 [30] Brunini C, Azpilicueta F J. Accuracy assessment of the GPS-based slant total electron content[J]. J. Geod., 2009, 83(8):773-785 [31] Brunini C, Azpilicueta F. GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions[J]. J. Geod., 2010, 84(5):293-304 [32] Zhang D, Zhang W, Li Q, et al. Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes[J]. Ann. Geophys., 2010, 28:1571-1580 [33] Choi B, Cho J, Lee S. Estimation and analysis of GPS receiver differential code biases using KGN in Korean Peninsula[J]. Adv. Space Res., 2011, 47(9):1590-1599 [34] Li Dong, Wang Jing, Song Shuli, Lu Xiushan. Calculating the differential code bias bases on the areal ionosphere mode[J]. Eng. Surv. Mapping, 2011, 20(6):40-44. In Chinese (李东, 王静, 宋淑丽, 卢秀山. 基于区域电离层建模的硬件延 迟参数估计[J]. 测绘工程, 2011, 20(6):40-44) [35] Wang Hu, Wang Jiexian, Bai Guixia, Zhu Weidong. Real-time monitoring of ionosphere changes in the Shanghai region by GPS technology[J]. Chin. J. Space Sci., 2011, 31(5):602-606. In Chinese (王虎, 王解先, 白贵霞, 朱卫东. 利用GPS技术实时监测上海区域电离层变化[J]. 空间科学学报, 2011, 31(5):602-606) -
-
计量
- 文章访问数: 2020
- HTML全文浏览量: 169
- PDF下载量: 1979
-
被引次数:
0(来源:Crossref)
0(来源:其他)