Fast Fitting Algorithm of Non-cooperative Space Object’s TLE Parameters
-
摘要: 针对空间目标TLE拟合过程中可能出现的奇点问题,提出了基于无奇异变换的空间目标双行轨道根数(TLE)生成算法. 为提高观测平台对空间目标状态估计效率,提出带有自适应遗忘因子的非线性最小二乘递推算法,利用最速下降法在线修正遗忘因子,使得估计值有较快的跟踪速度和较小的稳态误差. 仿真结果表明,该TLE生成算法的数据处理速度和轨道预报误差满足要求,可用于低轨目标的天基监视.Abstract: Due to the singularity existence in the iterative approximation procedure, a new Two-Line Elements (TLE) sampling fitting method is put forward according to the non-singular transformation of orbital elements. To improve the data-processing efficiency of space-based observation platform to the non-cooperative space target, the TLE fitting algorithm introduces the adaptive forgetting factor recursive least-squares algorithm. Numerical simulations indicate that the method can enhance the iterative rapidity of convergence and the accuracy of forecasting orbit, especially for near-Earth space objects. The fitting method can be applied to the tracking system of space-based observation platform to the near-Earth orbit target.
-
[1] Mark E D. Future space based radar technology needs for surveillance[C]//AIAA/ICAS International Air and Space Symposium and Exposition. Dayton, Ohio: AIAA, 2003 [2] Hoots F R, Roehrich R L. Models for propagation of NORAD Element sets[R]. Project Spacecraft Report No.3. Aerospace Defense Command, United States Air Force, 1980 [3] Byoung-Sun L. NORAD TLE conversion from osculating orbital elements[J]. J. Astron. Space Sci., 2002, 19(4):395-402 [4] Oliver M, Eberhard G. Real-time estimation of SGP4 orbital elements from GPS navigation data[C]//International Symposium Space Flight Dynamics. Biarritz, France, 2000 [5] Marino R, Tomei P. Nonlinear Control Design: Geometric, Adaptive and Robust[M]. New York: Prentice Hall, 1995 [6] Dwight E A. Computing NORAD Mean Orbital Elements From A State Vector[R]. Ohio: Air Force Institute of Technology, Wright-Patterson Air Force Base, 1994 [7] Xing Jianjun. Study on Formation Design and Stationkeeping of Spacecraft Formation Flying[D]. Changsha: National University of Defense Technology, 2007. In Chinese (杏建军. 编队卫星周期性相对运动轨道设计与构形保持研究[D]. 长沙: 国防科学技术大学, 2007) [8] Escobal P R. Methods of orbit determination[M]. New York: John Wiley & Sons Inc., 1965 [9] Kozai Y. The motion of a close Earth satellite[J]. Astron. J., 1959, 64(9):367-377 [10] Brouwer D. Solution of the problem of artificial satellite theory without drag[J]. Astron. J., 1959, 64(1274):378-396 [11] Leung S H, So C F. Gradient-based variable forgetting factor RLS algorithm in time-varying environments[J]. IEEE Trans. Sign. Proc., 2005, 53(8):3141-3150 [12] Li Jun. Research on Key Technologies of Space Objects Surveillance and Tracking in Space-based Optical Surveillance[D]. Changsha: National University of Defense Technology, 2009. In Chinese (李骏. 空间目标天基光学监视跟踪 关键技术研究[D]. 长沙: 国防科学技术大学, 2009) [13] Liu Guangming, Liao Ying, Wen Yuanlan, et al. Research on the fitting algorithm of broadcast ephemeris parameters[J]. J. Natl. Univ. Defense Tech., 2008, 30(3):100-104 [14] Liu Guangming, Wen Yuanlan, Liao Ying. Fitting algorithm of TLE parameters based on non-singular transformation[J]. Syst. Eng. Electr., 2011, 33(5):1104-1107. In Chinese (刘光明, 文援兰, 廖瑛. 基于无奇异变换的双行轨道根数生 成算法[J]. 系统工程与电子技术, 2011, 33(5):1104-1107) -
-
计量
- 文章访问数: 1731
- HTML全文浏览量: 130
- PDF下载量: 1579
-
被引次数:
0(来源:Crossref)
0(来源:其他)