留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚暴偶极化中近地磁尾质子的非绝热加速

孟雪洁 曹晋滨 王铁砚 马玉端

孟雪洁, 曹晋滨, 王铁砚, 马玉端. 亚暴偶极化中近地磁尾质子的非绝热加速[J]. 空间科学学报, 2014, 34(6): 794-801. doi: 10.11728/cjss2014.06.794
引用本文: 孟雪洁, 曹晋滨, 王铁砚, 马玉端. 亚暴偶极化中近地磁尾质子的非绝热加速[J]. 空间科学学报, 2014, 34(6): 794-801. doi: 10.11728/cjss2014.06.794
Meng Xuejie, Cao Jinbin, Wang Tieyan, Ma Yuduan. Nonadiabatic acceleration of protons in the near-earth magnetotail during substorm dipolarization[J]. Chinese Journal of Space Science, 2014, 34(6): 794-801. doi: 10.11728/cjss2014.06.794
Citation: Meng Xuejie, Cao Jinbin, Wang Tieyan, Ma Yuduan. Nonadiabatic acceleration of protons in the near-earth magnetotail during substorm dipolarization[J]. Chinese Journal of Space Science, 2014, 34(6): 794-801. doi: 10.11728/cjss2014.06.794

亚暴偶极化中近地磁尾质子的非绝热加速

doi: 10.11728/cjss2014.06.794 cstr: 32142.14.cjss2014.06.794
基金项目: 国家自然科学基金项目(40931054, 41174141, 40904042)和国家重点基础研究发展计划项目(2011CB811404)共同资助
详细信息
    通讯作者:
    • 孟雪洁,mxj1007@126.com
  • 中图分类号: P352

Nonadiabatic acceleration of protons in the near-earth magnetotail during substorm dipolarization

  • 摘要: 亚暴偶极化过程中离子加速是亚暴粒子注入的重要产生机制. 通过试验粒子的方法模拟研究了亚暴偶极化期间磁尾等离子体片-8Re~-5Re处超低频电磁波对质子的加速过程. 研究表明, 质子在大尺度偶极化电磁场的作用下向内磁层注入, 与质子回旋频率相近的超低频电磁波能够引起低能质子发生非绝热加速. 质子在偶极化前后的能量变化与质子的初始能量密切相关, 初始能量远小于截止能量的质子, 末能量要比初始能量显著增加, 其值与扰动波频率相关, 且量级与偶极化造成的低能氧离子能量增加量级基本相当; 初始能量在截止能量以上的质子受超低频电磁波影响不大, 注入过程能量基本保持不变.

     

  • [1] McPherron R L. Magnetospheric substorms[J]. Rev. Geophys., 1979, 17(4):657-681
    [2] Aggson T L, Heppner J P, Maynard N C. Observations of large magnetospheric electric fields during the onset phase of a substorm[J]. J. Geophys. Res., 1983, 88(A5):3981-3990
    [3] Lui A T Y, McEntire R W, Krimigis S M, et al. Acceleration of energetic oxygen (E>137keV) in the storm-time ring current[J]. Geophys. Monogr. Ser., 1986, 38:149-152
    [4] Lui A T Y, Lopez R E, Krimigis S M, et al. A case study of magnetotail current sheet disruption and diversion[J]. Geophys. Res. Lett., 1988, 15(7):721-724
    [5] Lopez R E, Lui A T Y, Sibeck D G, et al. On the relationship between the energetic particle flux morphology and the change in the magnetic field magnitude during substorms[J]. J. Geophys. Res., 1989, 94(A12):17105-17119
    [6] Fältha mmar C G. Effects of time-dependent electric fields on geomagnetically trapped radiation[J]. J. Geophys. Res., 1965, 70(11):2503-2516
    [7] Schulz M, Eviatar A. Diffusion of equatorial particles in the outer radiation zone[J]. J. Geophys. Res., 1969, 74(9):2182-2192
    [8] Pellinen R J, Heikkila W J. Energization of charged particles to high energies by an induced substorm electric field within the magnetotail[J]. J. Geophys. Res., 1978, 83(A4):1544-1550
    [9] Reeves G D, Belian R D, Fritz T A. Numerical tracing of energetic particle drifts in a model magnetosphere[J]. J. Geophys. Res., 1991, 96(A8):13997-14008
    [10] Reeves G D. New perspectives on substorm injections[J]. Astrophys. Space Sci. Libr., 1998, 238:785-790
    [11] Birn J, Thomsen M F, Borovsky J E, et al. Characteristic plasma properties of dispersionless substorm injections at geosynchronous orbit[J]. J. Geophys. Res., 1997, 102(A2):2309-2324
    [12] Daglis I A, Paschalidis N P, Sarris E T, et al. Statistical features of the substorm expansion-phase as observed by the AMPTE/CCE spacecraft[J]. Magnetosp. Subst., 1991, 64:323-332
    [13] Daglis I A, Livi S, Sarris E T, et al. Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms[J]. J. Geophys. Res., 1994, 99(A4):5691-5703
    [14] Nosé M, Lui A T Y, Ohtani S, et al. Acceleration of oxygen ions of ionospheric origin in the near-Earth magnetotail during substorms[J]. J. Geophys. Res., 2000, 105(A4):7669-7677
    [15] Delcourt D C, Sauvaud J A, Pedersen A. Dynamics of single-particle orbits during substorm expansion phase[J]. J. Geophys. Res., 1990, 95(A12):20853-20865
    [16] Delcourt D C, Sauvaud J A, Moore T E. Phase bunching during substorm depolarization[J]. J. Geophys. Res., 1997, 102(A11):24313-24324
    [17] Nosé M, Ohtani S, Lui A T Y, et al. Change of energetic ion composition in the plasma sheet during substorms[J]. J. Geophys. Res., 2000, 105(A10):23277-23286
    [18] Jones S T, Fok M C, Brandt P C. Modeling global O+ substorm injection using analytic magnetic field model[J]. J. Geophys. Res., 2006, 111(A11), doi: 10.1029/2006-JA-011607
    [19] Ashour Abdalla M. The study of non-linear acceleration of particles during substorms using multi-scale simulations[C]//AIP Conference Proceedings. Halkidiki, Gre-ece: American Institute of Physics, 2011, 1320:196
    [20] Ono Y, Nosé M, Christon S P, et al. The role of magnetic field fluctuations in nonadiabatic acceleration of ions during depolarization[J]. J. Geophys. Res., 2009, 114(A5), doi: 10.1029/2008-JA013918
    [21] Nosé M, Ono Y, Christon S P, et al. Revisiting the role of magnetic field fluctuations in nonadiabatic acceleration of ions during depolarization[J]. J. Geophys. Res., 2012, 117(A2), doi: 10.1029/2012JA017518
    [22] Lui A T Y. Current disruption in the Earth's magnetosphere: Observations and models[J]. J. Geophys. Res., 1996, 101(A6):13067-13088
    [23] Ohtani S, Takahashi K, Higuchi T, et al. AMPTE/CCE-SCATHA simultaneous observations of substorm-associated magnetic fluctuations[J]. J. Geophys. Res., 1998, 103(A3):4671-4682
  • 加载中
计量
  • 文章访问数:  1235
  • HTML全文浏览量:  150
  • PDF下载量:  1154
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2013-11-28
  • 修回日期:  2014-04-09
  • 刊出日期:  2014-11-15

目录

    /

    返回文章
    返回