Retrieval of initial disturbance of Spread-F based on adjoint theory and numerical simulation
-
摘要: 通过讨论Spread-F扰动初值对于研究R-T不稳定性的必要性,分析初值扰动提取在人工诱导电离层方面的重要作用, 首次提出了应用伴随理论将电离层不稳定性基本方程与Spread-F观测资料相结合提取其扰动初值的方法. 推导了电离层不稳定性方程的伴随模式并进行数值模拟实验, 结果表明电离层不稳定性方程能够较好描述 Spread-F的发展过程; 伴随模式在利用不同迭代初值以及不同时刻观测资料进行反演时, 均能得到较为理想的结果, 表明利用伴随模式反演电离层 Spread-F初始扰动是可行的.
-
关键词:
- 伴随理论 /
- 电离层Spread-F /
- 初始扰动 /
- 数值模拟
Abstract: Retrieval of initial disturbance of Spread-F is very important in the study on Rayleigh-Taylor instability (R-T instability). In this paper, adjoint theory is proposed and used in the retrieval of initial disturbance of Spread-F for the first time. The adjoint model of ionospheric instability is presented and numerical simulation is also carried out to test the algorithm. A physical model for the development of the mid-latitude Spread-F is developed, including the equations for density, momentum and continuity. The simulation results show that ionospheric instability model described the development of Spread-F well. By using different iterative initial value and simulated observation data at different time, the retrieval results fit well with the initial values, and it is feasible to obtain the initial disturbance using adjoint model.-
Key words:
- Adjoint theory /
- Ionosphere Spread-F /
- Initial disturbance /
- Numerical simulation
-
[1] Shen Qiqi, Shen Desheng. HF Co mmunication[M]. Xi'an: Xi'an University of Electronic Science and Technology Press, 1997. In Chinese (沈琪琪, 沈德生. 短波通信[M]. 西安: 西安电子科技大学出版社, 1997) [2] Zhou Wenyu, Jiao Pienan. OTH Radar Technology[M]. Beijing: Electronic Industry Press, 2004. In Chinese (周文瑜, 焦培南. 超视距雷达技术[M]. 北京: 电子工业出版社, 2004) [3] Headrick J M. Looking over the horizon[J]. IEEE Spectrum, 1990, 27(7):36-39 [4] Tang Xiaodong, Han Yunjie, Zhou Wenyu. Skywave over-the-horizon backscatter radar[C]//2001 CIE International Conference on Radar. Beijing: IEEE, 2001. 90-94 [5] Sultan P J. Linear theory and modeling of theRayleigh-Taylor instability leading to the occurrence of equatorial spread F[J]. J. Geophys. Res., 1996, 26:875-891 [6] Keskinen M J, Ossakow S L, Fejer B G. Three-dimensional nonlinear evolution of equatorial ionospheric Spread-F bubbles[J]. Geophys. Res. Lett., 2003, 30(16):1855 [7] Huang Weiquan, Xiao Saiguan, Xiao Zuo, et al. Comparison study of IRI-2007 Spread-F occurrence predictions and observations[J]. Chin. J. Space Sci., 2009, 29(3):275-280. In Chinese (黄为权, 肖赛冠, 肖佐, 等. IRI-2007对扩展F的预测与观测比较研究[J]. 空间科学学报, 2009, 29(3):275-280) [8] Sigh S. Morphology of equatorial plasma bubbles[J]. J. Geophys. Res., 1997, A9:20019-20029 [9] Ossakow S L. Spread-F theories-A review[J]. J. Atoms. Terr. Phys., 1981, 43:37-52 [10] Luo Weihua, Xu Jisheng, Xu Liang. Analysis of controlling factors leading to the development of R-T instability in equatorial ionosphere[J]. Chin. J. Geophys., 2009, 52(4):849-858. In Chinese (罗伟华, 徐继生, 徐良. 赤道电离层R-T不稳定性发展的控制因素分析[J]. 地球物理学报, 2009, 52(4):849-858) [11] Huang Chaosong, Kelley M C. Spatial and temporal evolution of equatorial Spread-F generated by electric fields[J]. Chin. J. Geophys., 1996, 36(5):296-305. In Chinese (黄朝松, Kelley M C. 电场产生的赤道扩展F的时空演变[J]. 地球物理学报, 1996, 36(5):296-305) [12] Woodman R F, Laho Z C. Radio observation of F-region equatorial irregularities[J]. J. Geophys. Res., 1976, 85:5447-5466 [13] Klostermeyer J. Nonlinear investigation of the spatial resonance effect in the nighttime equatorial F region[J]. J. Geophys. Res., 1977, 82:3753-3760 [14] Xie Hong, Xiao Zuo. Numerical simulation of Spread-F in low and mid-latitudes[J]. Chin. J. Geophys., 1993, 36(1):18-26. In Chinese (谢红, 肖佐. 中低纬度Spread-F的数值模拟[J]. 地球物理学报, 1993, 36(1):18-26) [15] Fu Zhufeng, Hu Youqiu. Numerical Simulation of Space Plasma[M]. Hefei: Anhui Science and Technology Press, 1995. In Chinese (傅竹风, 胡友秋. 空间等离子体数值模拟[M]. 合肥: 安徽科学技术出版社, 1995) [16] Zalesak S T. Fully multidimensional flux-corrected transport algorithms for fluids[J]. J. Comput. Phys., 1979, 31(3):335-362 [17] Bilitza D, Reinisch B W. International reference ionosphere 2007: Improvements and new parameters[J]. Adv. Space Res., 2008, 42(4):599-609 [18] Picone J M, Hedin A E, Drob D P, et al. Enhanced empirical models of the thermosphere[J]. Phys. Chem. Earth: C, 2000, 25(5):531-542 [19] Ossakow S L, Zalesak S T, McDonald B E. Nonlinear equatorial spread F: Dependence on altitude of the F peak and bottomside bac kground electron density gradient scale length[J]. J. Geophys Res., 1979, 84:17-29 -
-
计量
- 文章访问数: 1334
- HTML全文浏览量: 125
- PDF下载量: 1139
-
被引次数:
0(来源:Crossref)
0(来源:其他)