Simulation of three-dimensional Earth's bow shock
-
摘要: 利用磁流体动力学(MHD)全球模拟结果,根据弓激波的跃变特性确定出弓激波位置,建立了一个新的综合考虑了快磁声马赫数、太阳风动压、行星际磁场强度以及磁层顶曲率半径的弓激波三维位型模型.将新模型与以往模型的模拟结果进行比较发现,新的弓激波全球模型结果可靠,解决了部分现有模型不能描述弓激波三维位型的问题.研究结果表明,在行星际磁场北向时,随着快磁声马赫数的增大,弓激波日下点距离减小,但是在行星际磁场南向时,快磁声马赫数的变化对弓激波日下点距离影响不大;弓激波位型在赤道面与子午面上存在明显的不对称性,而且随着行星际磁场的转向,这种非对称性也会发生相应改变;行星际磁场南向,Bz值较小时,子午面内弓激波位型已经不是简单的抛物线,出现了明显的类似于极尖区磁层顶的凹陷变化区.Abstract: We use a physics-based global Magnetohydrodynamic (MHD) model to investigate the location and shape of the Earth's bow shock. The bow shock locations in the simulations are identified by an automated search algorithm and is fitted by simple analytical functions. A global three dimensional bow shock model is constructed to include the effect of magnetopause and is parameterized by the fast magnetosonic Mach number, solar wind ram pressure, interplanetary magnetic field strength, and magnetopause curvature radius. The model results are compared and agree well with the previous empirical and simulation models. We also find that both the shock standoff distance and the shock flaring angle decrease monotonically with increasing the fast magnetosonic Mach number. The size and location of bow shock on the equatorial plane and the meridian plane show obvious asymmetry.
-
Key words:
- Bow shock /
- Solar wind /
- Fast magnetosonic Mach number /
- Magnetopause curvature radius
-
[1] Wang Jingsong, Lü Jianyong. Space Weather[M]. Beijing: China Meteorological Press, 2010. In Chinese (王劲松, 吕建永. 空间天气学[M]. 北京: 气象出版社, 2010) [2] Fairfield D H. Average and unusual locations of the Earth's magnetopause and bow shock[J]. J. Geophys. Res., 1971, 76:6700 [3] Slavin J A, Holzer R E. Solar wind flow about the terrestrial planets[J]. J. Geophys. Res., 1981, 86:11401-11418 [4] Farris M H, Petrinec S M, Russell C T. The thickness of the magnetosheath-Constraints on the polytropic index[J]. Geophys. Res. Lett., 1991, 18:1821-1824 [5] Russell C T, Zhang T L. Unusually distant bow shock encounters at Venus[J]. Geophys. Res. Lett., 1992, 19:833 [6] Verigin M, Kotova G A, Shutte N, et al. Quantitative model of the Martian magnetopause shape and its variation with the solar wind ram pressure based on Phobos-2 observations[J]. J. Geophys. Res., 1997, 102(A2):2147-2156 [7] Cairns I H, Lyon J G. MHD simulations of Earth's bow shock at low Mach numbers: Standoff distances[J]. J. Geophys. Res., 1995, 10:17173-17180 [8] Peredo M, Slavin J A, Mazur E, et al. Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic, and magnetosonic Mach numbers and the interplanetary magnetic field orientation[J]. J. Geophys. Res., 1995, 100:7907-7916 [9] Chapman J F, Cairns I H. Three-dimensional modeling of Earth's bow shock: Shock shape as a function of Alfvén Mach number[J]. J. Geophys. Res., 2003, 108:1174 [10] Chapman J F, Cairns I H. MHD simulations of Earth's bow shock: Interplanetary magnetic field orientation effects on shape and position[J]. J. Geophys. Res., 2004, 109:A04215 [11] Julian H, Seiff A, Canning T N, et al. Gas Dynamics in Space Exploration[M]. Washington: The United States Government Printing Office, 1962 [12] Spreiter J R, Briggs B R. Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth[J]. J. Geophys. Res., 1962, 67:37 [13] Farris M H, Russell C T. Determining the standoff distance of the bow shock: Mach number dependence and use of models[J]. J. Geophys. Res., 1994, 99:17681-17689 [14] Lavraud B, Borovsky J E. Altered solar wind-magnetosphere interaction at low Mach numbers: Coronal mass ejections[J]. J. Geophys. Res., 2008, 113:A00B08 [15] Bennett L, Kivelson M G, Khurana, K K, et al. A model of the Earth's distant bow shock[J]. J. Geophys. Res., 1997, 102:26927, doi: 10.1029/97JA01906 [16] Chao J K, Wu D J, Lin C H, et al. Models for the size and shape of the Earth's magnetopause and bow shock[J]. Proc. COSPAR Colloq., 2002, 12:127-135 [17] Hu Youqiu, Peng Zhong, Wang Chi. Rotational asymmetry of Earth's bow shock[J]. Chin. J. Geophys., 2010, 53(4):773-781. In Chinese (胡友秋, 彭忠, 王赤. 地球弓激波的旋转飞对称性[J]. 地球物理学报, 2010, 53(4):773-781) [18] Tóth G, Sokolov I V, Gombosi T I, et al. Space Weather Modeling Framework: A new tool for the space science community[J]. J. Geophys. Res., 2005, A12226 [19] Powell K G, Roe P L, Linde T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 154:284-309 [20] De Zeeuw D L, Sazykin S, Wolf R A, et al. Coupling of a global MHD code and an inner magnetospheric model: Initial results[J]. J. Geophys. Res., 2004, A12219 [21] Lü J Y, Liu Z Q, Kabin K, Jing H, Zhao M X, Wang Y. The IMF dependence of the magnetopause from global MHD/simulations[J]. J. Geophys. Res., 2013, 118:3113-3125 [22] Verigin M, Kotova G A, Szabo A, et al. Wind observations of the terrestrial bow shock: 3-D shape and motion[J]. Earth Planet. Space, 2001, 53(10):1001-1009 -
-
计量
- 文章访问数: 2077
- HTML全文浏览量: 133
- PDF下载量: 1289
-
被引次数:
0(来源:Crossref)
0(来源:其他)