留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AUSM系列算法对比研究及背景太阳风初步应用

王涛 李会超 张曼 付华峥

王涛, 李会超, 张曼, 付华峥. AUSM系列算法对比研究及背景太阳风初步应用[J]. 空间科学学报, 2015, 35(4): 393-402. doi: 10.11728/cjss2015.04.393
引用本文: 王涛, 李会超, 张曼, 付华峥. AUSM系列算法对比研究及背景太阳风初步应用[J]. 空间科学学报, 2015, 35(4): 393-402. doi: 10.11728/cjss2015.04.393
WANG Tao, LI Huichao, ZHANG Man, FU Huazheng. Comparative Study of Three AUSM Algorithms and Simulated Application on the Solar Wind[J]. Chinese Journal of Space Science, 2015, 35(4): 393-402. doi: 10.11728/cjss2015.04.393
Citation: WANG Tao, LI Huichao, ZHANG Man, FU Huazheng. Comparative Study of Three AUSM Algorithms and Simulated Application on the Solar Wind[J]. Chinese Journal of Space Science, 2015, 35(4): 393-402. doi: 10.11728/cjss2015.04.393

AUSM系列算法对比研究及背景太阳风初步应用

doi: 10.11728/cjss2015.04.393
基金项目: 国家自然科学基金项目资助(41374176, 41204127)
详细信息
  • 中图分类号: P353

Comparative Study of Three AUSM Algorithms and Simulated Application on the Solar Wind

  • 摘要: 磁流体力学数值模拟是研究日地物理学现象的一个重要手段. 对比三种AUSM算法, 即AUSM, AUSM+和AUSMPW+, 结合HDC磁场散度消去方法计算多维MHD问题的性能. 通过分析三种算法计算Rotor算例和Orszag-Tang vortex算例的结果发现, AUSM+算法的性能最好. 进一步使用AUSM+算法基于6片网格构造模拟了日冕结构, 计算结果表明这种算法能够正确计算出日冕的大尺度结构. 对于日冕结构模拟块, HDC方法能够较好 地控制磁场散度误差.

     

  • [1] Feng X, Zhou Y, Wu S T. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method[J]. Ap. J., 2007, 655(2):1110-1126
    [2] Yang L P, Feng X S, Xiang C Q, et al. Time-dependent MHD modeling of the global solar corona for year 2007: Driven by daily-updated magnetic field synoptic data[J]. J. Geophys. Res., 2012, 117(A8):1101-1024
    [3] Riley P, Lionello R, Linker J A et al. Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval[J]. Solar Phys., 2010, 274(1/2):361-377
    [4] Shen F, Shen C,Wang Y et al. Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations[J]. Geophys. Res. Lett., 2013, 40(8):1457-1461
    [5] Lyon J, Fedder J, Mobarry C. The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code[J]. J. Atmos. Sol-Terr. Phys., 2004, 66(15-16):1333-1350
    [6] Pizzo V, Millward G, Parsons A et al. Wang-Sheeley-Arge-Enlil Cone Model transitions to operations[J]. Space Weather, 2010, 9:S03004
    [7] Tóth G. The ▽ · B=0 constraint in shock-capturing magnetohydrodynamics codes[J]. J. Comp. Phys., 2000, 161(2):605-652
    [8] Brackbill J U, Barnes D C. The effect of nonzero ▽ · B on the numerical solution of the magnetohydrodynamic equations[J]. J. Comp. Phys., 1980, 35(3):426-430
    [9] Evans C R, Hawley J F. Simulation of magnetohydrodynamic flows -- A constrained transport method[J]. Ap. J., 1988, 332:659-677
    [10] Powell K G. An approximate Riemann solver for magnetohydrodynamics//Upwind and High-Resolution Schemes[M]. Berlin: Springer-Verlag, 1994:570-583
    [11] Dedner A, Kemm F, Kroner D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. J. Comp. Phys., 2002, 175(2):645-673
    [12] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. J. Comp. Phys., 1997, 135(2):250-258
    [13] Van Leer B. Flux-vector splitting for the Euler equations[C]//Eighth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics. Berlin: Springer-Verlag, 1982:507-512
    [14] Steger J L, Warming R F. Flux vector splitting of the inviscid gas dynamic equation with application to finite-difference methods[J]. J. Comp. Phys,, 1981, 40(2):263-293
    [15] Rossow C-C. A flux-splitting scheme for compressible and incompressible flows[J]. J. Comp. Phys., 2000, 164(10):104-122
    [16] Liou M S, Steffen C J. A new flux splitting scheme[J]. J. Comp. Phys., 1993, 107(1):23
    [17] Liou M S. A Sequel to AUSM[J]. J. Comp. Phys., 1996, 129(4):364-382
    [18] Edwards J R. A low-diffusion flux-splitting scheme for Navier-Stokes calculations[J]. Comp. Fluids, 1997, 26(6): 653
    [19] Jameson A. Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flow[R], AIAA Paper, 1993-3359. Reston: AIAA, 1993
    [20] Agarwal R, Augustinus J. A comparative study of advection upwind split (AUSM) and wave/particle split (WPS) schemes for fluid and MHD flows[R], AIAA Paper 1999-3613. Reston: AIAA, 1999
    [21] Pan Y, Wang J F, Wu Y W. Upwind scheme for ideal 2-D MHD flows based on unstructured mesh[J]. Trans. Nanjing Univ. Aeron. Astron., 2007, 24(1):1-7
    [22] Han S H, Lee J I, Kim K H. Accurate and robust pressure weight advection upstream splitting method for magnetohydrodynamics equations[J]. AIAA J., 2009, 47(5):970-981
    [23] Munz C D, Schneider R, Sonnendrucker E, et al. Maxwell's equations when the charge conservation is not satisfied[J]. Comp. Ren. Acad. Sci.: Math., 1999, 328(5):431-436
    [24] Munz C D, Omnes P, Schneider R, E. et al. Divergence correction techniques for Maxwell solvers based on a hyperbolic model[J]. J. Comp. Phys. 2000, 161(2):484-511
    [25] Zhang Deliang. A Course in Computational Fluid Dynamics[M]. Beijing: Higher Education Press, 2010. In Chinese (张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010)
    [26] Balsara D S, Spicer D S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations[J]. J. Comp. Phys., 1999, 149(2):270-292
    [27] Shen Y, Zha G, Huerta M A. E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO scheme[J]. J. Comp. Phys., 2012, 231(19):6233-6247
    [28] Feng X S, Yang L P, Xiang C Q, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid[J]. Ap. J., 2010, 723:300-319
    [29] Parker E N. Dynamical theory of the solar wind[J]. Space Sci. Rev., 1965, 4(5/6):666-708
  • 加载中
计量
  • 文章访问数:  1341
  • HTML全文浏览量:  75
  • PDF下载量:  1347
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-14
  • 修回日期:  2014-09-16
  • 刊出日期:  2015-07-15

目录

    /

    返回文章
    返回