留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁尾等离子片中偶极化锋面的数值模拟研究

申井然 曹晋滨 吕浩宇 符慧山

申井然, 曹晋滨, 吕浩宇, 符慧山. 磁尾等离子片中偶极化锋面的数值模拟研究[J]. 空间科学学报, 2015, 35(4): 409-414. doi: 10.11728/cjss2015.04.409
引用本文: 申井然, 曹晋滨, 吕浩宇, 符慧山. 磁尾等离子片中偶极化锋面的数值模拟研究[J]. 空间科学学报, 2015, 35(4): 409-414. doi: 10.11728/cjss2015.04.409
SHEN Jingran, CAO Jinbin, LÜ Haoyu, FU Huishan. Numerical Simulation of Dipolarization Fronts in the Plasma Sheet of Magnetotail[J]. Chinese Journal of Space Science, 2015, 35(4): 409-414. doi: 10.11728/cjss2015.04.409
Citation: SHEN Jingran, CAO Jinbin, LÜ Haoyu, FU Huishan. Numerical Simulation of Dipolarization Fronts in the Plasma Sheet of Magnetotail[J]. Chinese Journal of Space Science, 2015, 35(4): 409-414. doi: 10.11728/cjss2015.04.409

磁尾等离子片中偶极化锋面的数值模拟研究

doi: 10.11728/cjss2015.04.409
基金项目: 国家自然科学基金项目资助(41474124, 41204131)
详细信息
  • 中图分类号: P352

Numerical Simulation of Dipolarization Fronts in the Plasma Sheet of Magnetotail

  • 摘要: 利用守恒型TVD格式对8波模型磁流体方程组进行数值模拟, 对磁尾中偶极化锋面的物理和演化特性进行研究. 构建了由BBF类型通量管机制产生的偶极化锋面数值模拟模型, 该模型由磁尾平衡模型、亚暴增长相模型和亚暴触发及BBF形成模型三部分组成. 数值模拟结果很好地再现了磁尾中BBF类型通量管机制产生的偶极化锋面特性. 伴随着高速 流的出现, 磁场Bz分量呈非对称双极变化结构, 即锋面前减小为负值, 在锋面上急剧增大. 当Bz增大到极大值后回落并趋于稳定. 随着偶极化锋面伴随地向高速流向地球运动, 偶极化锋面上Bz的变化越来越小.

     

  • [1] Angelopoulos V, Gosling J T. Statistical characteristics of bursty bulk flow events[J]. J. Geophys. Res., 1994, 99(A11):21257-21280
    [2] Hesse M, Birn J. Three-dimensional magnetotail equilibria by numerical relaxation techniques[J]. J. Geophys. Res., 1993, 98(A3):3973-3982
    [3] Shiokawa K, Baumjohann W, Haerendel G. Braking of high-speed flows in the near-Earth tail[J]. Geophys. Res. Lett., 1997, 24(10):1179-1182
    [4] Shiokawa K, Baumjohann W, Haerendel G, et al. High-speed ion flow, substorm current wedge, and multiple Pi2 pulsations[J]. J. Geophys. Res., 1998, 103(A3):4491-4507
    [5] Keiling A, Angelopoulos V, Runov A, et al. Substorm current wedge driven by plasma flow vortices: THEMIS observations[J]. J. Geophys. Res., 2009, 114:A00C22
    [6] Birn J, Raeder J, Wang Y L, et al. On the propagation of bubbles in the geomagnetic tail[J]. Ann. Geophys., 2004, 22(5):1773-1786
    [7] Ohtani S I, Shay M A, Mukai T. Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two- fluid simulations[J]. J. Geophys. Res., 2004, 109:A03210
    [8] Nakamura R, Retino A, Baumjohann W, et al. Evolution of dipolarization in the near-Earth current sheet induced by earthward rapid flux transport[J]. Ann. Geophys., 2009, 27(4):1743-1754
    [9] Slavin J A, Lepping R P, Gjerloev J, et al. Geotail observations of magnetic flux ropes in the plasma sheet[J]. J. Geophys. Res., 2003, 108(A1):1015
    [10] Sergeev V A, Kubyshkina M, Alexeev I, et al. A 2--satellite study of nightside flux-transfer events in the plasma sheet[J]. Planet. Space Sci., 1992, 40(11):1551-1572
    [11] Sitnov M I, Swisdak M, Divin A V. Dipolarization fronts as a signature of transient reconnection in the magnetotail[J]. J. Geophys. Res., 2009, 114:A04202
    [12] Powell K G, Roe P, Linde T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 154:284-309
    [13] Harten A. High resolution schemes for hyperbolic conservation laws[J]. J. Comput. Phys., 1983, 49:357-393
    [14] Tsyganenko N A. Magnetospheric magnetic field model with a warped tail current sheet[J]. Planet. Space Sci., 1989, 37:5
    [15] Ma Z W, Wang X, Bhattacharjee A. Growth, sudden enhancement, and relaxation of current sheets in the magnetotail: Two-dimensional substorm dynamics[J]. Geophys. Res. Lett., 1995, 22(21):2985-2988
    [16] Nakamura R, Baumjohann W, Mouikis C, et al. Spatial scale of high-speed flows in the plasma sheet observed by Cluster[J]. Geophys. Res. Lett., 2004, 31:L09804
    [17] Zhou Meng, Ashour-Abdalla M, Deng Siaohua, et al. THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-Earth magnetotail[J]. Geophys. Res. Lett., 2009, 36:L20107
    [18] Fu H S, Khotyaintsev Y V, Vaivads A, et al. Electric structure of dipolarization front at sub-proton scale[J]. Geophys. Res. Lett., 2012, 39:L06105
    [19] Fu H S, Cao J B, Khotyaintsev Y V, et al. Dipolarization fronts as a consequence of transient reconnection: In-situ evidence[J]. Geophys. Res. Lett., 2013, 40:6023-6027
    [20] Angelopoulos V, McFadden J P, Larson D, et al. Tail reconnection triggering substorm onset[J]. Science, 2008, 321:931
  • 加载中
计量
  • 文章访问数:  1400
  • HTML全文浏览量:  68
  • PDF下载量:  1066
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-02
  • 修回日期:  2015-04-07
  • 刊出日期:  2015-07-15

目录

    /

    返回文章
    返回