留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高纬极区离子速度分布函数多项式解及非相干散射谱计算

薛昆 许正文 吴健 张雅彬

薛昆, 许正文, 吴健, 张雅彬. 高纬极区离子速度分布函数多项式解及非相干散射谱计算[J]. 空间科学学报, 2015, 35(4): 424-437. doi: 10.11728/cjss2015.04.424
引用本文: 薛昆, 许正文, 吴健, 张雅彬. 高纬极区离子速度分布函数多项式解及非相干散射谱计算[J]. 空间科学学报, 2015, 35(4): 424-437. doi: 10.11728/cjss2015.04.424
XUE Kun, XU Zhengwen, WU Jian, ZHANG Yabin. Polynomial Solutions of the Ion Velocity Distributions and the Calculation of Incoherent Scatter Spectra in the High-latitude Auroral Ionosphere[J]. Chinese Journal of Space Science, 2015, 35(4): 424-437. doi: 10.11728/cjss2015.04.424
Citation: XUE Kun, XU Zhengwen, WU Jian, ZHANG Yabin. Polynomial Solutions of the Ion Velocity Distributions and the Calculation of Incoherent Scatter Spectra in the High-latitude Auroral Ionosphere[J]. Chinese Journal of Space Science, 2015, 35(4): 424-437. doi: 10.11728/cjss2015.04.424

高纬极区离子速度分布函数多项式解及非相干散射谱计算

doi: 10.11728/cjss2015.04.424
基金项目: 国家自然科学基金项目资助(41104108, 41104102)
详细信息
  • 中图分类号: P352

Polynomial Solutions of the Ion Velocity Distributions and the Calculation of Incoherent Scatter Spectra in the High-latitude Auroral Ionosphere

  • 摘要: 为更准确描述高纬极区电离层离子分布函数, 分别采用弛豫碰撞模型和麦克斯韦分子碰撞模型描述玻耳兹曼方程的碰撞项, 通过求解两种模型下的输运方程, 分别得到两种模型基于麦克斯韦分布下离子分布函数的13矩近似和基于双麦克斯韦分布下离子分布函数的16矩近似. 进一步根据Sheffield理论, 利用两种模型下离子分布函数的13矩和16矩近似, 计算了非相干散射谱, 并对结果进行对比分析. 结果表明, 相对于弛豫碰撞模型, 麦克斯韦分子碰撞模型能更好地描述电离层E层中离子与中性成分的相互作用. 相对于离子分布函数的13矩近似, 16矩近似更适合描述由于电场增加导致的离子温度各向异性特征.

     

  • [1] Aggon T L. Probe measurements of electric fields in space[M]. New York: Academic Press, 1969:305-316
    [2] Föppl H, Haerendel G, Haser L, et al. Preliminary results of electric field measurements in the auroral zone[J]. J. Geophys. Res., 1968, 73(1):21-26
    [3] Haerendel G, Lüst R, Rieger E, et al. Highly irregular artificial plasma clouds in the auroral zone[R]. MPI-PAE/Extraterr.21, Garching: Max-Planck-Institutfür Extra terrestrische Physik, 1969
    [4] Kelley M C, Mozer F S, FahlesonU V. Electric field in the nightime and daytime auroral zone[J]. J. Geophys. Res., 1971, 76(25):6054-6066
    [5] Mozer F S, Fahleson U V. Electric field measurements in the auroral ionosphere[J]. J. Geophys. Res., 1967, 72(3):1109-1114
    [6] Mozer F S, Fahleson U V. Parallel and perpendicular electric fields in an auroral[J]. Planet Space Sci., 1970, 18(11):1563-1571
    [7] Mozer F S, Serlin R. Magnetospheric electric field measurements with balloons[J]. J. Geophys. Res., 1969, 74(19):4739-4754
    [8] Potter W E. Rocket measurements of auroral electic and magnetic fields[J]. J. Geophys. Res., 1970, 75(28):5415-5431
    [9] Potter W E, Cahill L J. Electric and magnetic field measurements near an auroral electrojet[J]. J. Geophys. Res., 1969, 74(21):5159-5160
    [10] Wescott E M, Stolarik J D, Heppner J P. Electric fields in the vicinity of auroral forms from motions of barium vapor releases[J]. J. Geophys. Res., 1969, 74(14):3469-3487
    [11] Hultqist B. On the cause of the incoherent scatter plasma line in the presence of auroral electron precipitation[J]. J. Atmos. Terr. Phys., 1986, 48(9):1021-1025
    [12] Bjørnå N, Havnes J O, Trulsen J. Enhancement of the incoherent scattering plasma lines due to precipitating protons and secondary electrons[J]. Phys. Scr., 1982, 25(5):632-636
    [13] Meltz G, Perkins F W. Ionospheric modification theory: Past, present, and future[J]. Radio Sci., 1974, 9(11):885-888
    [14] Utlaut W F. Ionospheric modification induced by high-power HF transmitters: A potential for extended range VHF-UHF communications and plasma physics research[J]. Proc. IEEE, 1975, 63(7):1022-1043
    [15] Sultan P J, Mendillo M, Oliver W L, et al. Detection of artificially created negative ion clouds with incoherent scatter radar[J]. J. Geophys. Res., 1992, 97(A4):4085-4097
    [16] Barakat A R, Schunk R W. Comparison of transport equations based on Maxwellian and bi-Maxwellian distributions for anisotropic plasmas[J]. J. Phys. D: Appl. Phys., 1982, 15(7):1195-1216
    [17] St-Maurice J P, Schunk R W. Ion velocity distributions in the high-latitude ionosphere[J]. Rev. Geophys. Space Phys., 1979, 17(1):99-133
    [18] Grad H. Principles of the kinetic theory of gases[J]. Encyclope. Phys., 1958, 3(12):205-294
    [19] Tanenbaum B S. Plasma Physics[M]. New York: Academic Press, 1967
    [20] Shunk R W. Mathematical structure of transport equations for multispecies flows[J]. Rev. Geophys., 1977, 15(4):429-445
    [21] Xue Kun. Theoretical and Experiment Study on the Incoherent Scatter Spectra of High Latitude Auroral Ionosphere[D]. Xi'an: Xidian University, 2009. In Chinese (薛昆.高纬极区电离层非相干散射谱的理论和实验研究[D]. 西安: 西安电子科技大学, 2009)
    [22] Xue Kun, Guo Lixin, Wu Jian, et al. The ion distribution function from Maxwell molecule collision model and calculations of incoherent scatter spectra[J]. Chin. J. Space Sci., 2009, 29(3):287-295. In Chinese (薛昆, 郭立新, 吴健, 等. 麦克斯韦分子碰撞下的离子分布函数及其非相干散射谱的计算[J]. 空间科学学报, 2009, 29(3):287-295)
    [23] Demars H G, Schunk R W. Transport equations for multispecies plasmas based on individual bi-Maxwellian distributions[J]. J. Phys. D: Appl. Phys., 1979, 12(7):1051-1077
    [24] Sheffield J. Plasma Scattering of Electromagnetic Radiation[M]. New York: Academic Press, 1975:113-122
  • 加载中
计量
  • 文章访问数:  1442
  • HTML全文浏览量:  159
  • PDF下载量:  8512
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-18
  • 修回日期:  2014-11-04
  • 刊出日期:  2015-07-15

目录

    /

    返回文章
    返回