留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

影响卫星故障的空间天气分析

张晓芳 刘松涛 吴耀平

张晓芳, 刘松涛, 吴耀平. 影响卫星故障的空间天气分析[J]. 空间科学学报, 2015, 35(4): 461-472. doi: 10.11728/cjss2015.04.461
引用本文: 张晓芳, 刘松涛, 吴耀平. 影响卫星故障的空间天气分析[J]. 空间科学学报, 2015, 35(4): 461-472. doi: 10.11728/cjss2015.04.461
ZHANG Xiaofang, LIU Songtao, WU Yaoping. Statistical Analysis of Space Weather Effectson Satellites Anomalies[J]. Chinese Journal of Space Science, 2015, 35(4): 461-472. doi: 10.11728/cjss2015.04.461
Citation: ZHANG Xiaofang, LIU Songtao, WU Yaoping. Statistical Analysis of Space Weather Effectson Satellites Anomalies[J]. Chinese Journal of Space Science, 2015, 35(4): 461-472. doi: 10.11728/cjss2015.04.461

影响卫星故障的空间天气分析

doi: 10.11728/cjss2015.04.461
基金项目: 航天飞行动力学技术重点实验室开放基金项目资助(2012afdl034)
详细信息
  • 中图分类号: P353

Statistical Analysis of Space Weather Effectson Satellites Anomalies

  • 摘要: 基于美国国家地球物理数据中心(NGDC) 2384例和中国19颗卫星的263例卫星故障信息, 结合1963-2012年小时平均的多种空间环境数据, 定量分析了三种卫星故障发生期间的空间要素特征, 探讨单粒子锁定(SEU)、表面充电致静电放电(ESD)和内部深层充电所致电子引起的电磁脉冲(ECEMP)与空间天气事件的可能联系, 得出以下主要结论. (1)大部分SEU和ECEMP发生于空间天气平静时, 但在其前后3日内地磁活动达到了磁暴水平, 相对来说比例最大的发生在Dstmin之后第3日 (48~72h). (2) ESD受地磁活动和高能电子通量影响明显. 与磁暴、相对论电子通量增强事件的季节性相对应, 两分点附近ESD和ECEMP的发生率高; 93.6% 的 ESD发生前后72h内地磁活动达到磁暴水平, 故障发生时间均匀分布在 Dstmin前0~48h 和后0~24h; 54.9%的ESD 发生时处于地磁暴期(Dst <-30nT), 以-50~-30nT的小磁暴水平居多; 40.6%的ESD发生于高能电子通量高水平期(≥ 103pfu, 1pfu =1cm-2·s-1·sr-1), 81.9%的ESD发生前后72h 内高能电子通量峰值≥ 103pfu, 发生率最高时段为电子通量峰值前 48~72h. (3)高能电子对中国同步轨道卫星的SEU影响明显, 42.5% 故障发生 时高能电子通量≥ 103pfu, 故障在峰值前48~72h和峰值后48~72h 的发生概率相当, 约为23.0%. (4)同步轨道卫星SEU受太阳质子事件的影响相对较大, 22.5%的中国同步轨道卫星故障发生前后72h内发生了太阳质子事件, 季节性不明显.

     

  • [1] Shaw R R, Nanevicz J E, Adamo R C. Observations of electrostatic discharges caused by differential satellite charging[M]//Spacecraft Charging by Magnetospheric Plasmas. New York: AIAA, 1976:61-76
    [2] McPherson D A, Schober W R. Spacecraft charging at high altitudes: the SCATHA program[M]//Spacecraft Charging by Magnetospheric Plasmas. Cambridge, MA: MIT Press, 1975:15-30
    [3] Allen J H, Wilkinson D C. Solar-terrestrial activity affecting systems in space and on Earth[C]//Proceedings of the Workshop Solar-Terrestrial Predictions IV. Ottawa: NOAA, 1992:18-22
    [4] Stephen J H. Hazard to electronic in space[J]. NATO ASI Ser.: E, 1993, 245:407
    [5] Feynman J, Gabriel S B. On space weather consequences and predictions[J]. J. Geophys. Res., 2000, 105(A5):10543-10564
    [6] Welling D T. The long-term effects of space weather on satellite operations[J]. Ann. Geophys., 2010, 28:1361-1367
    [7] Webb F D, Allen J H. 2004. Spacecraft and ground anomalies related to the October-November 2003 solar activity[J]. Space Weather, 1994, 2:S03008, doi:10.1029/ 2004SW000075
    [8] Gussenhoven M S, Hardy D A, Rich F, et al. High level spacecraft charging in the low-altitude polar auroral environment[J]. J. Geophys. Res., 1985, 90(A11):11009-11024
    [9] Fredrickson A R. Upset related to spacecraft charging[J]. IEEE Trans. Nucl. Sci., 1996, 43:426-441
    [10] Pease R L. Total dose issue for microelectronic in space systems[J]. IEEE Trans. Nucl. Sci., 1996, 43:442-452
    [11] Baker D N, Li X, Blake J B, et al. Strong electron acceleration in the Earth's magnetosphere[J]. Adv. Space Res., 1998, 21:609-613
    [12] Fennell J F, Koons H C, Chen M, et al. Internal charging: A preliminary environmental specification for satellites[J]. IEEE Trans. Plas. Sci., 2000, 28:2029-2036
    [13] Farthing W H, Brown J P, Bryant W C. Differential Spacecraft Charging on the Geostationary Operational Satellites[R]. NASA Technical Memorandum 83908, 1982, 43
    [14] Baker D N. Satellite anomalies due to space storms[M]// Space Storms and Space Weather Hazards. Daglis I A. Springer, 2001, 38:285-311
    [15] Allen J H. Some commonly used magnetic activity indices: their derivation, meaning and use[C]//Proceedings of a Workshop on Satellite Drag. Boulder, Colorado: NOAA, 1982:114-134
    [16] Allen J H, Frank L, Sauer H, et al. Effects of the March 1989 solar activity[J]. EOS Trans. AGU., 1989, 70(46):1479-1488
    [17] Shea M A, Smart D F, Allen J H, et al. Spacecraft problems in association with episode of intense solar activity and related terrestrial phenomena during March 1991[J]. IEEE Trans. Nucl. Sci., 1992, 39(6):1754-1760
    [18] Blake J B, Baker D N, Turner N, et al. Correlation of changes in the outer-zone relativistic electron population with upstream solar wind and magnetic field measurements[J]. Geophys. Res. Lett., 1997, 24:927-930
    [19] Vampola A L. Analysis of environmentally induced spacecraft anomalies[J]. J. Spacec. Rocket., 1994, 31:154-159
    [20] Iucci N, Levitin A E, Belov A V, et al. Space weather conditions and spacecraft anomalies in different orbits[J]. Space Weather, 2005, 3(1):S01001, doi:10.1029/ 2003SW000056
    [21] Zhao Xiangang, Wei Caiying, Han Qi, et al. Research on the relationships between FY-2 meteorological satellite anomalies and space weather[J]. Prog. Geophys., 2011, 26(5):1522-1527. In Chinese (赵现纲, 魏彩英, 韩琦, 等. FY-2(02批)气象卫星异常事件与空间天气关系研究[J]. 地球物理学进展, 2011, 26(5):1522-1527)
    [22] Gubby R, Evans J. Space environment effects and satellite design[J]. J. Atmos. Solar Terr. Phys., 2002, 64:1723-1733
    [23] Dorman L I, Iucci N, Belov A V, et al. Space weather and space anomalies[J]. Ann. Geophys., 2005, 23:3009-3018
    [24] Bodeau M. Killer electrons from the angry Sun did not stop the pagers[J]. Space Weather, 2007, 5:S03006, doi: 10.1029/2006SW000266
    [25] Feynman J, Gabriel S B. On space weather consequences and predictions[J]. J. Geophys. Res., 2000, 105(A5):10543-10564
    [26] Koons H C, Mazur J E, Selesnick R S, et al. The Impact of the Space Environment on Space Systems[R]. Aerospace Technical Report TR-99(1670)-1, 1999
    [27] Reeves G D, Morley S K, Friedel R H W, et al. On the relationship between relativistic electron flux and solar wind velocity: Paulikas and blake revisited[J]. J. Geophys. Res., 2011, 116:A02213, doi: 10.1029/2010JA015735
    [28] Zhang Xiaofang, Liu Jun, Wu Yaoping, et al. Effect of interplanetary and magnetic activity parameters on relativistic electrons at geosynchronous orbit[J]. Chin. J. Geophys., 2013, 56(10):3223-3235. In Chinese (张晓芳, 刘俊, 吴耀平, 等. 行星际扰动和地磁活动对GEO相对 论电子影响[J]. 地球物理学报, 2013, 56(10):3223-3235)
    [29] Srivastava N, Venkatakrishnan P. Solar and interplanetary sources of major geomagnetic storms during 1996 -2002[J]. J. Geophys. Res., 2004, 109:A10103, doi: 10.1029/2003JA010175
    [30] Gonzalez W D, Tsurutani B T, Gonzalez A L. Interplanetary origin of geomagnetic storms[J]. Space Sci. Rev., 1999, 88:529-562
    [31] Zhang Xiaofang, Zha Shixiang, Liu Songtao, et al. Effect of interplanetary disturbances on magnetic activities[J]. Seism. Geomag. Obs. Res., 2011, 32(3):52-61. In Chinese (张晓芳, 査石祥, 刘松涛, 等. 行星际扰动对地磁活动的影响[J]. 地震地磁观测与研究, 2011, 32(3):52-61)
    [32] Kudela K. Cosmic rays and space weather: Direct and indirect relations[C]//Proceedings of the 30th International Cosmic Ray Conference. Mexico City, Universidad Nacional Autonóma de México, 2009:195-208
  • 加载中
计量
  • 文章访问数:  1575
  • HTML全文浏览量:  88
  • PDF下载量:  2512
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-07
  • 修回日期:  2014-12-31
  • 刊出日期:  2015-07-15

目录

    /

    返回文章
    返回