Effects of Thunderstorms Electric Field on Intensity of Cosmic Ray Electronsormalsize
-
摘要: 雷暴期间宇宙线次级粒子强度变化与大气电场的关联研究, 对分析大气电场 加速宇宙线次级带电粒子的机制具有重要意义. 采用Monte Carlo方法, 模拟 研究了雷暴电场对宇宙线次级粒子中电子强度的影响. 结果显示, 在强度为 1000V·cm-1的雷暴电场中, 高海拔处电子数目呈指数增长, 在大气深度约300g·cm-2处达到极大值, 与以往研究提出的相 对论电子逃逸雪崩机制相符. 模拟结果表明, 在地面宇宙线观测实验中, 要想 得到明显的观测效应, 雷暴电场距离探测面的高度应<600m, 电场厚度应 达到约2000m. 模拟结果为分析雷暴电场与地面宇宙线次级粒子中电子强度 的关联性提供了重要参考, 为进一步模拟研究雷暴期间高山地面宇宙线强度的变 化提供了重要信息.
-
关键词:
- 雷暴电场 /
- 宇宙线 /
- Monte Carlo模拟
Abstract: Correlation study on the intensity change of the cosmic rays and the thunderstorms electric field is very important in understanding the acceleration mechanism of secondary charged particles caused by electric field. In this paper, Monte Carlo simulations were performed to study the effects of the thunderstorms electric field on the electrons in extensive air showers. High up in the atmosphere, the number of electrons increased exponentially in a field of 1000V·cm-1. And at an atmospheric depth about 300g·cm-2, the electrons reached a maximum. These results were consistent with the theory of Relativistic Runaway Electron Avalanche (RREA). The simulations also indicated that in order to obtain a clearly observable effect in the ground experiments, the thunderstorms electric field should be located not higher than 600m above the detector, and the length of the electric field should be about 2000m. These preliminary results are helpful to understand the correlation between the thunderstorms electric field and the electron intensity of ground cosmic rays, and provide important information to further study of the effects on secondary cosmic ray particles in thunderstorms electric field.-
Key words:
- Thunderstorms electric field /
- Cosmic rays /
- Monte Carlo simulations
-
[1] MACGORMAN D R, RUST W D. The Electrical Nature of Storms[M]. New York: Oxford University Press, 1998, 79(46):422 [2] STOLZENBURG M, MARSHALL T C, RUST W D, et al. Electric field values observed near lightning flash initiations[J]. Geophys. Res. Lett., 2007, 34(4):L04804 [3] MARSHALL T C, STOLZENBURG M, MAGGIO C R, et al. Observed electric fields associated with lightning initiation[J]. Geophys. Res. Lett., 2005, 32(3):L03813 [4] ZHOU Wei, ZHANG Yang, ZHANG Yijun, et al. Occurrence regularity of CPT discharge event in negative cloud-to-ground lightning[J]. Acta Phys. Sin., 2014, 63(1):019202 (周威, 张阳, 张义军, 等. 负地闪CPT放电事件的发生规律研 究[J]. 物理学报, 2014, 63(1):019202) [5] WU Bin, ZHANG Guangshu, WANG Yanhui, et al. The multi-parameter observation of lightning M changes in northeastern part of the Qinghai-Tibet Plateau[J]. Acta Phys. Sin., 2013, 62(18):189202 (武斌, 张广庶, 王彦辉, 等. 青 藏高原东北部闪电M变化多参量观测[J]. 物理学报, 2013, 62(18):189202) [6] LIU Dongxia, QIE Xiushu, WANG Zhichao, et al. Characteristics of lightning radiation source distribution and charge structure of squall line[J]. Acta Phys. Sin., 2013, 62(21):219201 (刘冬霞, 郄秀书, 王志超, 等. 飑线系统中的闪电辐射源分布特征及云内电荷结构讨论[J]. 物理学报, 2013, 62(21):219201) [7] WILSON C T R. The electric field of a thundercloud and some of its effects[C]//Proceedings of the Physical Society. London: The Physical Society, 1924, 37:32D-37D [8] GUREVICH A V, MILIKH G M, ROUSSEL-DUPRE R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm[J]. Phys. Lett.: A, 1992, 165:463-468 [9] CRAMER E S, DWYER J R, ARABSHAHI S, et al. An analytical approach for calculating energy spectra of relativistic runaway electron avalanches in air[J]. J. Geophy. Res. Space Phys., 2014, 119:7794-7823 [10] ALEXEENKO V V, CHERNYAEV A B, CHUDAKOV A E, et al. Short perturbations of cosmic ray intensity and electric field in atmosphere[C]//Proceeding of 19th International Cosmic Ray Conference. La Jolla, USA: International Union of Pure and Applied Physics, 1985:352-355 [11] ALEXEENKO V V, KHAERDINOV N S, LIDVANSKY A S, et al. Transient variations of secondary cosmic rays due to atmospheric electric field and evidence for pre-lightning particle acceleration[J]. Phys. Lett.: A, 2002, 301:299-306 [12] CHILINGARIAN A, DARYAN A, ARAKELYAN K, et al. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neu-trons[J]. Phys. Rev.: D., 2010, 82:043009 [13] CHILINGARIAN A, HOVSEPYAN G, HOVHANNISYAN A. Particle bursts from thunderclouds: Natural particle accelerators above our heads[J]. Phys. Rev.: D., 2011, 83:062001 [14] WANG Junfang, QIE Xiushu, LU Hong, et al. Effect of thunderstorm electric field on intensity of cosmic ray muons[J]. Acta Phys. Sin., 2012, 61(15):159202 (王俊芳, 郄秀书, 卢红, 等.雷暴电场对宇宙射线次级粒子μ 子 的影响研究[J]. 物理学报, 2012, 61(15):159202) [15] Xu Bin, Bie Yeguang, Zou Dan. Study of the Instantaneous change of secondary cosmic ray during thunderstorm[J]. Chin. J. Space Sci., 2012, 32(4):501-505 (徐斌, 别业广, 邹丹, 雷暴期间次级宇宙线粒子强度瞬时变化研究[J]. 空间科学学报, 2012, 32(4):501-505) [16] ZHOU Xuemei, YE Ni, ZHU Fengrong, et al. Observing the effect of the atmospheric electric field inside thunderstorms on the EAS with the ARGO-YBJ experi-ment[C]//Proceeding of 32th International Cosmic Ray Conference.Beijing: International Union of Pure and Applied Physics, 2011:287-290 [17] HUEGE T, UIRICH R, ENGEL R. Monte Carlo simulations of geosynchrotron radio emission from CORSIKA-simulated air showers[J]. Astropart. Phys., 2007, 27:392-405 [18] BUITINK S, HUEGE T, FALCKE H, et al. Monte Carlo simulations of air showers in atmospheric electric fields[J]. Astropart. Phys., 2010, 33:112 [19] HECK D, KNAPP J, CAPDEVIELLE J, et al. CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers[R]: Report-FZKA6019, Forschungszentrum Karlsruhe-Wissenhaltliche Berichte, 1998 [20] BIELAJEW A F. Electron Transport in ±b E and ±b B Fields, in Monte Carlo Transport of Electrons and Photons[M]. New York: Plenum Press, 1988:421-434 [21] MARSHALL T C, RISON W, RUST W D, et al. Rocket and balloon observations of electric field in two thunderstorms[J]. J. Geophys. Res., 1995, 100:20815-20828 [22] DWYER J R. A fundamental limit on electric fields in air[J]. Geophys. Res. Lett., 2003, 30(20):2055 [23] SYMBALISTY E M D, ROUSSEL-DUPRE R A, YUKHIMUK V A. Finite volume solutions of the relativistic Boltzmann equation for electron avalanche studies[J]. IEEE Trans. Plasma Sci., 1998, 26(5):1575-1582 -
-
计量
- 文章访问数: 1331
- HTML全文浏览量: 137
- PDF下载量: 916
-
被引次数:
0(来源:Crossref)
0(来源:其他)