Wnt3a/β-catenin信号通路调节模拟微重力诱导的骨髓间充质干 细胞增殖抑制
doi: 10.11728/cjss2016.01.063 cstr: 32142.14.cjss2016.01.063
Wnt3a/β-catenin Signaling Pathway Mediates Inhibition of Proliferation of Mesenchymal Stem Cells Induced by Modeled Microgravity
-
摘要: 微重力环境对骨髓间充质干细胞(MSCs)的增殖行为起着重要调节作用, 但其 中的分子机理尚不清楚. 采用平行平板旋转培养装置模拟微重力效应, 考察了 模拟微重力效应下MSCs增殖行为的变化以及Wnt3a/β-catenin信号通路在 该过程中的作用. 结果发现, 模拟微重力效应明显抑制MSCs的增殖行为, 下调 Wnt3a mRNA的表达, 降低细胞质中游离β-catenin, 减少β-catenin 向细胞核转移, 抑制Cyclin D1的表达. 结果表明, Wnt3a/β-catenin信 号通路可能介导了微重力效应诱导的MSCs增殖抑制.Abstract: Microgravity is known to play an important role in regulating the proliferation of Mesenchymal Stem Cells (MSC). However, information regarding the molecular mechanisms that link microgravity and MSC proliferation is still limited. In this study, using a parallel-plate clinostat to simulate microgravity effect, we examined the effect of Modeled Microgravity (MMG) on the proliferation of bone marrow-derived MSCs and the possible role of Wnt3a/β-catenin signaling pathway in this process. The results showed that MSCs subjected to MMG for 3 days exhibited significantly decrease of cell proliferation. Moreover, MMG weakened mRNA expression of Wnt3a, reduced unbound β-catenin in cytoplasm and subsequently inhibited the translocation of β-catenin into nucleus. Expression of Cyclin D1 at mRNA level in MSCs was also impaired after treatment with MMG. These results suggest that Wnt3a/β-catenin signaling pathway may be mediate inhibition of proliferation of MSCs induced by MMG.
-
Key words:
- Microgravity /
- Mesenchymal stem cell /
- Cell proliferation /
- Wnt signal
-
[1] PITTENGER M F, MACKAY A M, BECK S C, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147 [2] CAPLAN A I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine[J]. J. Cell. Phy-siol., 2007, 213(2):341-347 [3] YUAN L, LUO Q, YANG L, et al. Role of FAK-ERK1/2 signaling pathway in proliferation of rat bone-marrow mesenchymal stem cells stimulated by cyclic stretching[J]. J. Med. Biol. Eng., 2013, 33(2):229-238 [4] SARRAF C E, OTTO W R, EASTWOOD M. In vitro mesenchymal stem cell differentiation after mechanical stimulation[J]. Cell Prolif., 2011, 44(1):99-108 [5] LONG Mian. How to stimulate a space microgravity environment or effect on Earth: From the viewpoint of responses of space cell growth to microgravity[J]. Chin. Sci. Bull., 2014, 59(20):2004-2015 (龙勉. 如何在地球表面模拟空间微重力环境或 效应:从空间细胞生长对微重力响应谈起[J]. 科学通报, 2014, 59(20):2004-2015) [6] OKADA A, ICHIKAWA J, TOZAWA K. Kidney stone formation during space flight and long-term bed rest[J]. Clin. Calcium, 2011, 21(10):1505-1510 [7] WIENER T C. Space obstructive syndrome: Intracranial hypertension, intraocular pressure, and papilledema in space[J]. Aviat. Space Environ. Med., 2012, 83(1):64-66 [8] SHEYN D, PELLED G, NETANELY D, et al. The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: A bioinformatics study[J]. Tissue Eng. Part A, 2010, 16(11):3403-3412 [9] MEYERS V E, ZAYZAFOON M, DOUGLAS J T, et al. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity[J]. J. Bone Miner. Res., 2005, 20(10):1858-1866 [10] DAI Z Q, WANG R, LING S K, et al. Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells[J]. Cell Prolif., 2007, 40(5):671-684 [11] JIN F, ZHANG Y J, XUAN K, et al. Establishmentof three-dimensional tissue-engineered bone constructs under microgravity-simulated conditions[J]. Artif. Org., 2010, 34(2):118-125 [12] ZAYZAFOON M, GATHINGS W E, MCDONALD J M. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis[J]. Endocrinology, 2004, 145(5):2421-2432 [13] LI Xiaona, SONG Guanbin, LUO Qing. Effect of mechanical stretch on migration of bone mesenchymal stem cells in vitro[J]. China Biotech., 2012, 32(5):1-6 (李晓娜, 宋关斌, 罗庆. 机械拉伸对骨髓间充质干细胞迁移行 为的影响[J]. 中国生物工程杂志, 2012, 32(5):1-6) [14] ZHANG Chen, LU Dongyuan, SUN Shuyuan, et al. Impacts of ground-based microgravity simulation on biological responses of bone marrow mesenchymal stem cells and the underlying mechanisms: a mini-review[J]. J. Med. Biomech., 2014, 29(3):285-291 (张晨, 吕东媛, 孙树津, 等. 地基微重力效应模拟影响骨髓间充质干细胞生物学行为及其调控机理研究进展[J]. 医用生物力学, 2014, 29(3):285-291) [15] GERSHOVICH J G, BURAVKOVA L B. Morphofunctional status and osteogenic differentiation potential of human mesenchymal stromal precursor cells during in vitro modeling of microgravity effects[J]. Bull. Exp. Biol. Med., 2007, 144(4):608-613 [16] HUANG Y, DAI Z Q, LING S K, et al. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells[J]. J. Biomed. Sci., 2009, 16(1):87 [17] YUGE L, KAJIUME T, TAHARA H, et al. Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation[J]. Stem Cells Dev., 2006, 15(6):921-929 [18] YAMAZAKI S, MIZUMOTO T, NASU A, et al. Regulation of osteogenetic differentiation of mesenchymal stem cells by two axial rotational culture[J]. J. Artif. Organs, 2011, 14(4):310-317 [19] TEO J L, KAHN M. The Wnt signaling pathway in cellular proliferation and differentiation: A tale of two coactivators[J]. Adv. Drug Deliv. Rev., 2010, 62(12):1149-1155 [20] ZHANG J, GILL A J, ISSACS J D, et al. The Wnt/β-catenin pathway drives increased cyclin D1 levels in lymph node metastasis in papillary thyroid cancer[J]. Hum. Pathol., 2012, 3(7):1044-1050 -
-
计量
- 文章访问数: 1706
- HTML全文浏览量: 198
- PDF下载量: 968
-
被引次数:
0(来源:Crossref)
0(来源:其他)