留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偶极倾角对弓激波日下点距离和尾部张角的影响

袁换只 吕建永 王明

袁换只, 吕建永, 王明. 偶极倾角对弓激波日下点距离和尾部张角的影响[J]. 空间科学学报, 2016, 36(3): 272-278. doi: 10.11728/cjss2016.03.272
引用本文: 袁换只, 吕建永, 王明. 偶极倾角对弓激波日下点距离和尾部张角的影响[J]. 空间科学学报, 2016, 36(3): 272-278. doi: 10.11728/cjss2016.03.272
YUAN Huanzhi, LÜ Jianyong, WANG Ming. Influence of the Dipole Tilt Angle on the Subsolar Standoff Distance and the Tail Flaring Angle of the Bow Shock[J]. Chinese Journal of Space Science, 2016, 36(3): 272-278. doi: 10.11728/cjss2016.03.272
Citation: YUAN Huanzhi, LÜ Jianyong, WANG Ming. Influence of the Dipole Tilt Angle on the Subsolar Standoff Distance and the Tail Flaring Angle of the Bow Shock[J]. Chinese Journal of Space Science, 2016, 36(3): 272-278. doi: 10.11728/cjss2016.03.272

偶极倾角对弓激波日下点距离和尾部张角的影响

doi: 10.11728/cjss2016.03.272
基金项目: 国家重点基础研究发展计划项目(2012CB825606), 国家自然科学基金重点项目(41031063),国家自然科学基金项目(41574158), 江苏省双创(2014)人才项目和南京信息工程大学人才启动项目共同资助
详细信息
    作者简介:

    袁换只,E-mail:yuanhuanzhi@126.com

    通讯作者:

    吕建永,E-mail:jylu@nuist.edu.cn

  • 中图分类号: P353

Influence of the Dipole Tilt Angle on the Subsolar Standoff Distance and the Tail Flaring Angle of the Bow Shock

  • 摘要: 通过对IMP 8,Geotail,Magion 4和Cluster 1四颗卫星弓激波穿越数据的统计及拟合分析,定量研究了偶极倾角对弓激波日下点距离和尾部张角的影响.结果表明:弓激波日下点距离随偶极倾角绝对值的增大而增大,且偶极倾角为负值时比其为正值时日下点距离增大的幅度更大;弓激波尾部张角随偶极倾角绝对值增大而减小;当偶极倾角由负变为正的时候,弓激波向地球一侧移动,同时尾部张角增大.研究结果为进一步建立包含偶极倾角效应的弓激波模型奠定了基础.

     

  • [1] CHAO J K, WU D J, LIN C H, et al. Models for the size and shape of the Earth's magnetopause and bow shock[C]//COSPAR Colloquia series. Pergamon:COSPAR, 2002, 12:127-135
    [2] DMITRIEV A V, CHAO J K, WU D J. Comparative study of bow shock models using WIND and Geotail observations[J]. J. Geophys. Res., 2003, 108(A12):1464
    [3] FARRIS M H, RUSSELL C T. Determining the standoff distance of the bow shock:Mach number dependence and use of models[J].J. Geophys. Res., 1994, 99:17681-17689
    [4] VERIGIN M I, KOTOVA G A, SLAVIN J, et al. Analysis of the 3-D shape of the terrestrial bow shock by Interball/Magion 4 observations[J]. Adv. Space Res., 2001, 28(6):857-862
    [5] HU Huiping, LU Jianyong, ZHOU Quan, et al. Simulation of three-dimensional Earth's bow shock[J]. Chin. J. Space Sci., 2015, 35(1):1-8(胡慧萍,吕建永,周全,等.地球弓激波的三维模拟[J].空间科学学报, 2015, 35(1):1-8)
    [6] CHAPMAN J F, CAIRNS I H, LYON J G, et al. MHD simulations of Earth's bow shock:interplanetary magnetic field orientation effects on shape and position[J]. J. Geophys. Res.:Space Phys., 2004, 109(A4):A04215. DOI: 10.1029/2003JA010235
    [7] VERIGIN M, SLAVIN J A, KOTOVA G, GOMBOSI T.Planetary bow shocks:asymptotic MHD Mach cones[J]. Earth Planets Space, 2003, 55:33-38
    [8] PETRINEC S M, RUSSELL C T. An examination of the effect of dipole tilt angle and cusp regions on the shape of the dayside magnetopause[J]. J. Geophys. Res.:Space Phys., 1995, 100(A6):9559-9566
    [9] ZHOU X W, RUSSELL C T. The location of the highlatitude polar cusp and the shape of the surrounding magnetopause[J]. J. Geophys, Res., 1997, 89:11048-11052
    [10] TSYGANENKO N A. Modeling of twisted/warped magnetospheric configurations using the general deformation method[J]. J. Geophys. Res.:Space Phys., 1998, 103(A10):23551-23563
    [11] ŠAFRÁNKOVÁ J, DUŠÍK Š, NěME?EK Z. The shape and location of the high-latitude magnetopause[J]. Adv. Space Res., 2005, 36(10):1934-1939
    [12] BOARDSEN S A, EASTMAN T E, SOTIRELIS T, et al. An empirical model of the high-latitude magnetopause[J]. J. Geophys. Res.:Space Phys., 2000, 105(A10):23193-23219
    [13] LIN R L, ZHANG X X, LIU S Q, et al. A threedimensional asymmetric magnetopause model[J]. J. Geophys. Res., 2010, 115:A04207
    [14] LIU Z Q, LU J Y, WANG C, et al. A three-dimensional high Mach number asymmetric magnetopause model from global MHD simulation[J]. J. Geophys Res.:Space Phys., 2015, 120:5645-5666
    [15] MERKA J, SZABO A. Bow shock's geometry at the magnetospheric flanks[J]. J. Geophys. Res., 2004, 109(A12):A12224. DOI: 10.1029/2004JA010567
    [16] JELÍNEK K, NěM?CEK Z, ŠAFRÁNKOVÁ J, et al. Influence of the tilt angle on the bow shock shape and location[J]. J. Geophys. Res., 2008, 113(A5):521-532
    [17] FORMISANO V. Orientation and shape of the Earth's bow shock in three dimensions[J]. Planet. Space Sci., 1979, 27(9):1151-1161
    [18] PEREDO M, SLAVIN J A, MAZUR E, et al. Threedimensional position and shape of the bow shock and their variation with Alfvenic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation[J]. J. Geophys. Res.:Space Phys., 1995, 100(A5):7907-7916
    [19] RUSSELL C T, PETRINECS M. Towards an MHD theory for the standoff distance of Earth's bow shock[J]. Geophys. Res. Lett., 1996, 23(3):309-310
    [20] LIU Z Q, LU J Y, KABIN K, et al. Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations[J]. J. Geophys. Res.:Space Phys., 2012, 117(A7):282-292
  • 加载中
计量
  • 文章访问数:  1423
  • HTML全文浏览量:  60
  • PDF下载量:  929
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-02
  • 修回日期:  2015-11-28
  • 刊出日期:  2016-05-15

目录

    /

    返回文章
    返回