留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X级质子耀斑的特征研究

张烨 师立勤 崔延美 刘四清

张烨, 师立勤, 崔延美, 刘四清. X级质子耀斑的特征研究[J]. 空间科学学报, 2017, 37(3): 249-261. doi: 10.11728/cjss2017.03.249
引用本文: 张烨, 师立勤, 崔延美, 刘四清. X级质子耀斑的特征研究[J]. 空间科学学报, 2017, 37(3): 249-261. doi: 10.11728/cjss2017.03.249
ZHANG Ye, SHI Liqin, CUI Yanmei, LIU Siqing. Research on Characteristics of X-class Solar Proton Flare[J]. Chinese Journal of Space Science, 2017, 37(3): 249-261. doi: 10.11728/cjss2017.03.249
Citation: ZHANG Ye, SHI Liqin, CUI Yanmei, LIU Siqing. Research on Characteristics of X-class Solar Proton Flare[J]. Chinese Journal of Space Science, 2017, 37(3): 249-261. doi: 10.11728/cjss2017.03.249

X级质子耀斑的特征研究

doi: 10.11728/cjss2017.03.249 cstr: 32142.14.cjss2017.03.249
基金项目: 

国家自然科学基金项目(11503063)和国家重点基础研究计划项目(2012CB825606)共同资助

详细信息
  • 中图分类号: P353

Research on Characteristics of X-class Solar Proton Flare

  • 摘要: 为了更加准确地判断X级耀斑是否引发质子事件,对X级质子耀斑和非质子耀斑的耀斑积分通量、源区、CME速度、CME角宽度、背景太阳风速度及背景X射线通量的分布进行了统计研究.发现非质子耀斑和质子耀斑的积分通量、经度、CME速度和CME角宽度具有明显不同的分布.非质子耀斑大多集中在东部,耀斑积分通量小于0.3J·m-2,CME速度小于1300km·s-1的区域内;质子耀斑大多集中在中部或西部,耀斑积分通量大于0.3J·m-2,CME速度大于1300km·s-1的区域内.质子耀斑伴随的CME角宽度主要集中在360°,非质子耀斑的CME角宽度分布则相对分散.两类耀斑的背景太阳风速度和背景X射线通量分布差别不大.利用两类耀斑各个参量分布上的差异,有望提高X级耀斑预报的准确率.

     

  • [1] IUCCI N, LEVITIN A E, BELOV A V, et al. Space weather conditions and spacecraft anomalies in different orbits[J]. Space Weather Int. J. Res. Appl., 2005, 3(1): 505-518
    [2] HOFF J L, TOWNSEND L W, ZAPP E N. Interplanetary crew doses and dose equivalents: variations among different bone marrow and skin sites[J]. Adv. Space Res., 2004, 34(6):1347-1352
    [3] WEBBER W R. A Review of Solar Cosmic Ray Eve-nts[R]. Washington: NASA Special Publication, 1964, 50
    [4] GOPALSWAMY N, YASHIRO S, LARA A, et al. Large solar energetic particle events of cycle 23: a global view[J]. Geophys. Res. Lett., 2003, 30(12):405-414
    [5] BELOV A, GARCIA H, KURT V, et al. Proton enhancements and their relation to the X-ray flares during the three last solar cycles[J]. Solar Phys., 2005, 229(1):135-159
    [6] KAHLER S W, DOES A. Scaling law exist between solar energetic particle events and solar flares[J]. Astrophys. J., 2013, 769(1):599-614
    [7] KURT V, BELOV A, MAVROMICHALAKI H, et al. Statistical analysis of solar proton events[J]. Ann. Geophys., 2004, 22(6):2255-2271
    [8] BELOV A, GARCIA H, KURT V, et al. Proton events and X-ray flares in the last three solar cycles[J]. Cosmic Res., 2005, 43(3):165-178
    [9] GOPALSWAMY N. Solar and geospace connections of energetic particle events[J]. Geophys. Res. Lett., 2003, 30(12):321-337
    [10] MYERS R L, SHISHKIN Y, KORDINA O, et al. Interac-ting coronal mass ejections and solar energetic particles[J]. Astrophys. J. Lett., 2002, 572(1):L103-108
    [11] RICHARDSON I G, LAWRENCE G R, HAGGERTY D K, et al. Are CME "interactions" really important for accelerating major solar energetic particle events[J]. Geophys. Res. Lett., 2003, 30(12):SSC5-1
    [12] REAMES D V. Particle acceleration at the Sun and in the heliosphere[J]. Space Sci. Rev., 1999, 90(3-4):413-491
    [13] REAMES D V. The two sources of solar energetic particles[J]. Space Sci. Rev., 2013, 175(1-4):53-92
    [14] KAHLER S W. Solar flares and coronal mass ejections[J]. Ann. Rev. Astron. Astrophys., 1992, 30(30):113-141
    [15] CANE H V, MCGUIRE R E, VONROSENVINGE T T. Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares[J]. Astrophys. J., 1985, 301:448-459
    [16] REAMES D V, ROSENVINGE T T V, LIN R P, et al. Solar/sup 3/He-rich events and nonrelativistic electron events: A new association[J]. Astrophys. J., 1985, 2(2):716-724
    [17] KAHLER S W. Coronal mass ejections and solar energetic particle events[C]//High Energy Solar Physics. AIP Publishing, 1996:61-77
    [18] REAMES D V, CLIVER E W, KAHLER S W. Abundance enhancements in impulsive solar energetic-particle events with associated coronal mass ejections[J]. Solar Phys., 2014, 289:3817-3841
    [19] PARK J, MOON Y J. What flare and CME parameters control the occurrence of solar proton events[J]. J. Geophys. Res. Space Phys., 2014, 119(12):9456-9463
    [20] BALCH C C. SEC proton prediction model: verification and analysis[J]. Radiat. Meas., 1999, 30(3):231-50
    [21] KAHLER S W, CLIVER E W, LING A G. Validating the Proton Prediction System (PPS)[J]. J. Atmos. Sol.-Terr. Phys., 2007, 69:43-49
    [22] LAURENZA M, CLIVER E W, HEWITT J, et al. A Technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape[J]. Space Weather, 2009, 7:S04008
    [23] CUI Yanmei, LIU Siqing, WANG Huaning. Application of solar photospheric magnetic field properties in SPE short-term forecast[J]. Chin. J. Space Sci., 2010, 30(2):97-104 (崔延美, 刘四清, 王华宁. 太阳光球磁场特征物理量在质子事件短期预报中的应用[J]. 空间科学学报, 2010, 30(2):97-104)
    [24] CUI Yanmei, LI Rong, LIU Siqing. SPE Short-term forecast with the photospheric magnetic field properties and traditional forecast factors[J]. Chin. J. Space Sci., 2011, 31(4):436-440 (崔延美, 李蓉, 刘四清. 结合光球磁场特征物理量的质子事件短期预报[J]. 空间科学学报, 2011, 31(4):436-440)
    [25] LI Rong, CUI Yanmei, HE Han, WANG Huaning. Solar proton event prediction model based on support vector machine and k-nearest neighbors[J]. Sci. Tech. Eng., 2007, 7(15):3649-3654
    [26] GONG Jiancun, XUE Bingsen, LIU Siqing, et al. Short-term forecast of solar proton event[J]. Chin. J. Space Sci., 2003, 23(6):443-451 (龚建村, 薛炳森, 刘四清,等. 神经网络方法在太阳质子事件短期预报中的应用[J]. 空间科学学报, 2003, 23(6):443-451)
    [27] KAHLER S W. The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters[J]. J. Geophys. Res. Space Phys., 1982, 87(A5):3439-3448
  • 加载中
计量
  • 文章访问数:  1469
  • HTML全文浏览量:  147
  • PDF下载量:  1513
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2016-03-02
  • 修回日期:  2016-12-15
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回