留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国廊坊中间层和低热层大气平均风观测模拟

杨钧烽 肖存英 胡雄 徐轻尘

杨钧烽, 肖存英, 胡雄, 徐轻尘. 中国廊坊中间层和低热层大气平均风观测模拟[J]. 空间科学学报, 2017, 37(3): 284-290. doi: 10.11728/cjss2017.03.284
引用本文: 杨钧烽, 肖存英, 胡雄, 徐轻尘. 中国廊坊中间层和低热层大气平均风观测模拟[J]. 空间科学学报, 2017, 37(3): 284-290. doi: 10.11728/cjss2017.03.284
YANG Junfeng, XIAO Cunying, HU Xiong, XU Qingchen. Observations and Simulations of the Mean Winds in Mesosphere and Lower Thermosphere over Langfang of China[J]. Chinese Journal of Space Science, 2017, 37(3): 284-290. doi: 10.11728/cjss2017.03.284
Citation: YANG Junfeng, XIAO Cunying, HU Xiong, XU Qingchen. Observations and Simulations of the Mean Winds in Mesosphere and Lower Thermosphere over Langfang of China[J]. Chinese Journal of Space Science, 2017, 37(3): 284-290. doi: 10.11728/cjss2017.03.284

中国廊坊中间层和低热层大气平均风观测模拟

doi: 10.11728/cjss2017.03.284
基金项目: 

国家重点研发计划项目(2016YFB0501503)和国家自然科学基金项目(41104099)共同资助

详细信息
    作者简介:

    肖存英,xiaocy@nssc.ac.cn

  • 中图分类号: P41

Observations and Simulations of the Mean Winds in Mesosphere and Lower Thermosphere over Langfang of China

  • 摘要: 利用中国廊坊站(39.4°N,116.7°E)流星雷达在2012年4月1日至2013年3月31日的水平风场观测数据,分析廊坊上空80~100km的中间层与低热层(Mesosphere and Lower Thermosphere,MLT)大气平均纬向风和经向风的季节变化特征.结果表明平均纬向风和经向风都表现出明显的季节变化特征.平均纬向风在冬季MLT盛行西风,极大值位于中间层顶,随高度增加西风减弱;在夏季中间层为东风,低热层为强西风,风向转换高度约为82km.平均经向风在冬季以南风为主,在夏季盛行北风.纬向风和经向风在春秋两季主要表现为过渡阶段.流星雷达观测结果与WACCM4模式和HWM93模式模拟的气候变化特点基本一致,但WACCM4模式纬向风和经向风风速偏大,而HWM93模式纬向风和经向风风速偏小.

     

  • [1] SMITH A K. Global dynamics of the MLT[J]. Surveys Geophys., 2012, 33(6):1177-1230
    [2] WAN Weixing, XU Jiyao. Recent investigation on the coupling between the ionosphere and upper atmos-phere[J]. Sci. China: Earth Sci., 2014, 57(9):1863-1883 (万卫星, 徐寄遥. 中国高层大气与电离层耦合研究进展[J]. 中国科学:地球科学, 2014, 44(9):1863-1883)
    [3] ZHAO Lei, CHEN Jinsong, DING Zonghua, et al. First observations of tidal oscillations by an Mf radar over Kunming (25.6°N, 103.8°E)[J]. J. Atmos. Sol.-Terr. Phys., 2012, 78-79:44-52
    [4] LU Xian, LIU A Z, SWENSON G R, et al. Gravity wave propagation and dissipation from the stratosphere to the lower thermosphere[J]. J. Geophys. Res., 2009, 114(D11):D11101
    [5] LU Xian, LIU A Z, OBERHEIDE J, et al. Seasonal variability of the diurnal tide in the mesosphere and lower thermosphere over Maui, Hawaii (20.7°N, 156.3°W)[J]. J. Geophys. Res., 2011, 116(D17):D17103
    [6] LIMPASUVAN V, RICHTER J H, ORSOLINI Y J, et al. The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized in WACCM[J]. J. Atmos. Sol.-Terr. Phys., 2012, 78-79:84-98
    [7] YI Wen, CHEN Jinsong, MA Chunbo, et al. Observation of upper atmospheric temperature by Kunming all-sky meteor radar[J]. Chin. J. Geophys., 2014, 57(8):2433-2432 (易稳, 陈金松, 马春波, 等. 昆明全天空流星雷达观测中高层大气温度[J]. 地球物理学报, 2014, 57(8):2433-2432)
    [8] XIONG Jiangang, WAN Weixing, NING Baiqi, et al. Meteor radar observation of circulation near mesopause over Wuhan[J]. Chin. Sci. Bull., 2003, 48(10):1102-1106 (熊建刚, 万卫星, 宁百齐, 等. 武汉上空中层顶附近大气环流的流星雷达观测[J]. 科学通报, 2003, 48(10):1102-1106)
    [9] GUO Wenjie HU Xiong, YAN Zhaoai, et al. Terrain-generated gravity waves in the upper stratosphere detected by Rayleigh lidar[J]. Chin. J. Geophys., 2015, 58(10):3481-3486 (郭文杰, 胡雄, 闫召爱, 等. 利用瑞利激光雷达观测北京地区上平流层地形重力波活动[J]. 地球物理学报, 2015, 58(10):3481-3486)
    [10] CHEN Hongbin. An overview of the space-based observations for upper atmospheric research[J].Adv. Earth Sci., 2009, 24(3):229-241 (陈洪滨. 中高层大气研究的空间探测[J]. 地球科学进展, 2009, 24(3):229-241)
    [11] XIAO Cunying, HU Xiong, SMITH A K, et al. Short-term variability and summer——2009 averages of the mean wind and tides in the mesosphere and lower thermosphere over Langfang, China (39.4°N, 116.7°E)[J]. J. Atmos. Sol.-Terr. Phys., 2013, 92:65-77
    [12] XU X, MANSON A H, MEEK C E, et al. Mesosphe-ric wind semidiurnal tides within the Canadian middle atmosphere model data assimilation system[J]. J. Geophys. Res., 2011, 116(D17):D17102
    [13] DAVIS R N, DU J, SMITH A K, et al. The diurnal and semidiurnal tides over ascension island (8°S, 14°W) and their interaction with the stratospheric quasi-biennial oscillation: studies with meteor radar, eCMAM and WACCM[J]. Atmos. Chem. Phys., 2013, 13(18):9543-9564
    [14] XIAO Cunying, HU Xiong, ZHANG Xunxie, et al. Interpretation of the mesospheric and lower thermospheric mean winds observed by MF radar at about 30°N with the 2D-SOCRATES model[J]. Adv. Space Res., 2007, 39(8):1267-1277
    [15] RICHTER J H, SASSI F, GARCIA R R, et al. Dyna-mics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3)[J]. J. Geophys. Res., 2008, 113(D8):D08101
    [16] LU Xian, LIU Hanli, LIU A Z, et al. Momentum budget of the migrating diurnal tide in the whole atmosphere community climate model at vernal equinox[J]. J. Geophys. Res., 2012, 117(D7):D07112
    [17] ANDRIOLI V F, CLEMESHA B R, BATISTA P P, et al. Atmospheric tides and mean winds in the meteor region over Santamaria (29.7°S, 53.8°W)[J]. J. Atmos. Sol.-Terr. Phys., 2009, 71(17/18):1864-1876
    [18] HOCKING W K, FULLER B, VANDEPEER B. Real-time determination of meteor-related parameters utili-zing modern digital technology[J]. J. Atmos. Sol.-Terr. Phys., 2001, 63(2-3):155-169
    [19] GARCIA R R, MARSH D R, KINNISON D E, et al. Simulation of secular trends in the middle atmosphere, 1950--2003[J]. J. Geophys. Res., 2007, 112(D9):D09301
    [20] RICHTER J H, SASSI F, GARCIA R R. Toward a physically based gravity wave source parameterization in a general circulation model[J]. J. Atmos. Sci., 2010, 67(1):136-156
    [21] BERES J H, GARCIA R R, BOVILLE B A, et al. Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM)[J]. J. Geophys. Res., 2005, 110(D10):D10108
    [22] HEDIN A E, SPENCER N W, KILLEEN T L. Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data[J]. J. Geophys. Res., 1988, 93(A9):9959-9978
    [23] HEDIN A E, BIONDI M A, BURNSIDE R G, et al. Revised global model of thermosphere winds using satellite and ground-based observations[J]. J. Geophys. Res., 1991, 96(A5):7657-7688
    [24] HEDIN A E, FLEMING E L, MANSON A H, et al. Empirical wind model for the upper, middle and lower atmosphere[J]. J. Atmos. Sol.-Terr. Phys., 1996, 58(13):1421-1447
    [25] ZHANG Dongya, HU Xiong, ZHANG Xunxie, et al. Observations of the mesospheric and lower thermospheric mean winds at 30°N with MF radars[J]. Chin. J. Space Sci., 2005, 25(4):267-272 (张冬娅, 胡雄, 张训械, 等. 北纬30°N中间层和低热层大气平均风中频雷达观测[J]. 空间科学学报, 2005, 25(4):267-272)
    [26] KISHORE P, NAMBOOTHIRI S P, IGARASHI K, et al. MF radar observations of mean winds and tides over Poker Flat, Alaska (65.1°N, 147.5°W)[J]. Ann. Geophys., 2002, 20(5):679-690
  • 加载中
计量
  • 文章访问数:  940
  • HTML全文浏览量:  74
  • PDF下载量:  1045
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-25
  • 修回日期:  2016-12-05
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回