Experimental Research on Solar Array Drive Assembly Internal Charging Effects
-
摘要: 太阳帆板驱动机构(Solar Array Drive Assembly,SADA)是长寿命、大功率航天器能源系统的关键部件.在空间高能电子环境下,SADA内部会发生静电放电甚至诱发二次放电,导致航天器丧失能源.利用双束加速器建立试验平台,对SADA进行内带电效应试验.试验中高能电子束的电子能量为2MeV,束流密度为5pA·cm-2,模拟SADA工作电压为50~150V,工作电流为0.5~1.5A.试验样品充电电位在辐照5h后达到平衡,形成的电场约为5×106V·m-1.相同工作电流下的放电次数随工作电压增大而明显增加,说明工作电压形成的电场与高能电子沉积形成的电场叠加会增加SADA发生放电的风险.依据试验结果,提出SADA抗内带电设计方案:一是降低SADA介质盘的体电阻率;二是改进导电环结构体的结构设计,降低导电环间电压在介质盘上形成的电场.Abstract: Solar Array Drive Assembly (SADA) is a crucial component of the electrical transfer sub-assembly of the modern long life and large power satellite. The internal discharging and secondary arc in SADA, which happened under the high-energy electron environment, can lead to spacecraft abnormity and malfunction. Experimental platform has been built by using the two-beam accelerator. In the experiment, the electron energy is 2MeV, the beam density is 5pA·cm-2, the working voltage of SADA is from 50 to 150V, and the working current is from 0.5 to 1.5A. The charging potential of test sample can reach equilibrium after 5 hours of irradiation. The electric field can reach about 5×106V·m-1. The time of discharge increases apparently with the increase of the working voltage at the same operating current. It shows that the electric field formed by the working voltage and the electric field formed by the high energy electron deposition will be superposed, which leads to the increase of the risk of SADA discharge. According the experiment results, the design of SADA anti-internal electricity can be improved by adopting the following methods. By reducing the bulk resistivity of SADA dielectric disk and improving the design of conducting ring structure, the electric field on the dielectric disk formed by the voltage between the conductive rings can be reduced.
-
[1] KATZ I, DAVIS V A, MANDELL M J, et al. Interactive spacecraft charging interactive handbook with integrated, updated spacecraft charging models[C]//Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings. Reno, NV: AIAA, 2000 [2] LI Rui, LIU Jikui, XU Yuemin, et al. Study of surface charging and discharging effects on solar array drive assembly[J]. Chin. J. Space Sci., 2014, 34(3):360-366 (李睿, 刘继奎, 徐跃民, 等. 太阳帆板驱动机构的表面充放电效应研究[J]. 空间科学学报, 2014, 34(3):360-366) [3] WHITTLESEY A, GARRETT H. Avoiding problems caused by spacecraft on-orbit internal charging effects[R]. Washington, DC: NASA, 1999 [4] BAI Jingjing, WU Jiang, WANG Jinfeng, et al. The influence of voltage-sensitive additive on electrical parameters of polyimide[C]//Proceedings of the 9th International Conference on the Properties and Applications of Dielectric Materials. Harbin: IEEE, 2009:1128-1132 [5] GAO Xing, WANG Youping. The universalization, serialization and modularization design of Solar Array Drive Assembly (SADA)[J]. Chin. J. Space Sci., 2002, 22(z2):55-68 (高星, 王友平. 太阳电池阵驱动机构的通用化、系列化和组合化设计[J]. 空间科学学报, 2002, 22(z2):55-68) [6] LANZEROTTI L J, BREGLIA C, MAURER D W, et al. Studies of spacecraft charging on a geosynchronous telecommunications satellite[J]. Adv. Space Res., 1998, 22(1):79-82 [7] HUANG Jianguo, CHEN Dong. A study of deep dielectric charging on satellites for different grounding patterns[J]. Acta Phys. Sin., 2004, 53(5):1611-1616 [8] LI Guochang, MIN Daomin, LI Shengtao, et al. Research of deep dielectric charging characteristics of polytetrafluoroethylene irradiated by energetic electrons[J]. Acta Phys. Sin., 2014, 63(20):209401 [9] MA Yali, QIN Xiaogang, YANG Shengsheng, et al. Surface potential measurement of material irradiated by energetic electrons[C]//Proceedings of the 2nd Conference on Space material and Application Technology. Beijing: China Academy of Space Technology, 2009:649-652 [10] SORENSEN J, RODGERS D J, RYDEN K A, et al. ESA'S tools for internal charging[J]. IEEE Trans. Nucl. Sci., 2000, 47(3):491-497 -
-
计量
- 文章访问数: 1818
- HTML全文浏览量: 123
- PDF下载量: 1361
-
被引次数:
0(来源:Crossref)
0(来源:其他)