Simplified Calculation Method of Geomagnetic Field Model ormalsize
-
摘要: 为了实现地磁导航在近地轨道卫星上的应用,需要解决传统的高斯球谐函数递推法在计算地磁场强度时存在方法复杂、计算量大、实时性难以保证等问题.针对上述问题,提出一种用地球磁场估计函数代替球谐函数的地磁场强度计算方法.该方法利用伪地心下的磁偶极子模型代替主磁场模型,通过多项式拟合离线得到高度范围内固定经纬度网格点的伪中心距系数,进而利用插值法和偶极子模型得到任意点的地磁场强度.仿真结果表明,轨道高度为300~500km,经纬度网格间隔为0.5°时,地球磁场估计函数法的导航精度与地球主磁场模型WMM精度一致的同时,降低了计算负担,提高了算法计算效率.Abstract: To realize the application of geomagnetic navigation on the low orbit satellite, the complexity, enormous calculation, poor real time ability of traditional Gaussian spherical harmonica function should be solved before being used to calculate the geomagnetic vector. A geomagnetic field approximation function, Geomagnetic Field Approximation Functions (GFAF), is proposed to replace the spherical harmonic function. Dipole model under a pseudo-centers is utilized to replace the main geomagnetic model in GFAF method. And the coefficient of pseudo-center of different latitude-longitude grid is obtained by polynomial fit method. Finally, the geomagnetic field vector of any position can be achieved using different interpolation algorithm. A simulation test is carried out under the condition that the increment of latitude and longitude is 0.5° and the orbital height is from 300 to 500km. The results show that the navigation accuracy of GFAF method is the same to that of geomagnetic field model. However, GFAF method effectively decreases the cost of computing and and improves the calculation efficiency.
-
[1] XU Wenyao. Geomagnetism[M]. Beijing: Seismological Press, 2003:4-10 (徐文耀. 地磁学[M]. 北京: 地震出版社, 2003:4-10) [2] FINLAY C C, MAUS S, BEGGAN C D, et al. International geomagnetic reference field: the eleventh generation[J]. Geophys. J. Int., 2010, 183(3):1216-1230 [3] CHULLIAT A, MACMILLAN S, ALKEN P, et al. The US/UK World Magnetic Model for 2015-2020[R]. Technical Report. National Geophysical Data Center, NOAA, 2015 [4] LI Dan. Research on the Key Technology of Small Satellite Multi-sensor Autonomous Navigation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008:19-25 (李丹. 小卫星多传感器自主导航关键技术研究[D]. 南京: 南京航空航天大学, 2008:19-25) [5] WANG Peng, ZHANG Yingchun. Method of high precision autonomous navigation based on geomagnetic field[J]. Syst. Eng. Electron., 2012, 34(8):1660-1667 (王鹏, 张迎春. 基于地磁场的高精度自主导航方法[J]. 系统工程与电子技术, 2012, 34(8):1660-1667) [6] XING Yanjun. Research on Integrated Orbit and Attitude Determination for Small Satellite and Formation[D]. Harbin: Harbin Institute of Technology, 2012:25-28 (邢艳军. 微小卫星及其编队轨道与姿态一体化确定方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2012:25-28) [7] HUJSAK R S. Gravity acceleration approximation functions[J]. Adv. Astronaut. Sci., 1996, 93(1):335-349 [8] TONG Kewei, ZHOU Jianping, HE Linshu. A reduced orbit propagation model of low-Earth orbit satellite[J]. J. Astron., 2009, 30(4):1327-1333 (童科伟, 周建平, 何麟书. 近地卫星简化轨道预报方法研究[J]. 宇航学报, 2009, 30(4):1327-1333) [9] WANG Fuhong, XU Qichao, GONG Xuewen, et al. Application of a gravity acceleration approximation function in the precise real-time orbit determination using space-borne GPS measurements[J]. Geomat. Inf. Sci. Wuhan Univ., 2014, 39(1):47-51 (王甫红, 徐其超, 龚学文, 等. GAAF在星载GPS实时定轨中的应用研究[J]. 武汉大学学报:信息科学版, 2014, 39(1):47-51) [10] HUANG Yu. Geomagnetic Field Measurement and Study on Underwater Magnetic Localization Technology[D]. Harbin: Harbin Engineering University, 2011:20-25 (黄玉. 地磁场测量及水下磁定位技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2011:20-25) [11] MYERS R H. Classical and Modern Regression with Applications[M]. 2nd ed. Boston, Mass.: Duxbury Press, 2000 -
1. 梁宇潇,高东. 一种磁异常梯度测量的地磁/惯性融合导航方法. 空间科学学报. 2025(01): 201-214 . 本站查看
2. 陈贵芳,郁丰,王润. 基于新息趋势的纳卫星地磁定轨. 航天控制. 2021(01): 20-25 . 百度学术
3. 吴凡. 新体制旋扫成像光学卫星动力学与控制研究[D]. 哈尔滨工业大学. 2020. 百度学术
4. 安柏林. 基于SWARM卫星磁测的中国及邻区地磁场梯度研究[D]. 云南大学. 2019. 百度学术
5. 陈贵芳. 微纳卫星自适应地磁定轨技术研究[D]. 南京航空航天大学. 2021. 百度学术
6. 冯晨瑞. 地下核爆对电离层影响分析及当量估算探索性研究[D]. 中国电子科技集团公司电子科学研究院. 2024. 百度学术
7. 陈贵芳,江迎波,吴远航,卢志龙,王健. 基于多传感器融合的微卫星位置估计算法研究[C]. 第七届中国(国际)商业航天高峰论坛论文集. 2021.: 268-274 . 百度学术
8. 潘莹. 太平洋地区地球主磁场及其长期变化[D]. 云南大学. 2023. 百度学术
-
计量
- 文章访问数: 2899
- HTML全文浏览量: 153
- PDF下载量: 5907
-
被引次数:
8(来源:其他)