[1] |
FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1):1003
|
[2] |
YUE Jia, HOFFMANN L, ALEXANDER M J. Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment[J]. J. Geophys. Res., 2013, 118(8):3178-3191
|
[3] |
SUZUKI S, VADAS S L, SHIOKAWA K, et al. Typhoon-induced concentric airglow structures in the mesopause region[J]. Geophys. Res. Lett., 2013, 40(22):5983-5987
|
[4] |
YUE Jia, MILLER S D, HOFFMANN L, et al. Stratospheric and mesospheric concentric gravity waves over tropical cyclone Mahasen:joint AIRS and VⅡRS satellite observations[J]. J. Atmos. Solar-Terr. Phys., 2014, 119:83-90
|
[5] |
XU Jiyao, LI Qinzeng, YUE Jia, et al. Concentric gravity waves over northern China observed by an airglow imager network and satellites[J]. J. Geophys. Res., 2015, 120(21):11058-11078
|
[6] |
TSUTSUI M, OGAWA T. HF Doppler observation of ionospheric effects due to typhoons[J]. Rep. Ionosph. Space Res. Jpn., 1973, 27:121-123
|
[7] |
LIU Yimou, WANG Jingsong, SUO Yicheng. Effects of typhoon on the ionosphere[J]. Adv. Geosci., 2006, 2:351-360
|
[8] |
MAO Tian, WANG Jinsong, YANG Guanglin, et al. Effects of typhoon Matsaon ionospheric TEC[J]. Chin. Sci. Bull., 2010, 55(8):712-717(毛田, 王劲松, 杨光林, 等. 台风"麦莎"对电离层TEC的影响[J]. 科学通报, 2009, 54(24):3858-3863)
|
[9] |
YU Tao, WANG Yungang, MAO Tian, et al. A case study of the variation of ionospheric parameter during typhoons at Xiamen[J]. Acta Meteor. Sin., 2010, 68(4):569-576(余涛, 王云冈, 毛田, 等. 台风期间厦门电离层变化的一次特例分析[J]. 气象学报, 2010, 68(4):569-576)
|
[10] |
SHUAI Jing, ZHANG Shaodong, HUANG Chunming, et al. Climatology of global gravity wave activity and dissipation revealed by SABER/TIMED temperature observations[J]. Sci. China Tech., 2014, 57(5):998-1009
|
[11] |
HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J. Medium-scale traveling ionospheric disturbances affecting GPS measurements:spatial and temporal analysis[J]. J. Geophys. Res., 2006, 111(A7):A07S11
|
[12] |
HUNGR J, TSAO Y D, LIU J M, et al. Lower thermospheric density fluctuations during the time period of Typhoon Dinah[C]//27th Aerospace Sciences Meeting. Reno, NV, USA:AIAA, 1989:10
|
[13] |
MING F C, IBRAHIM C, BARTHE C, et al. Observation and a numerical study of gravity waves during tropical cyclone Ivan (2008)[J]. Atmos. Chem. Phys., 2014, 14(2):641-658
|
[14] |
KIM S Y, CHUN H Y, BAIK J J. A numerical study of gravity waves induced by convection associated with Typhoon Rusa[J]. Geophys. Res. Lett., 2005, 32(24):L24816. DOI: 10.1029/2005GL024662
|
[15] |
KIM S Y, CHUN H Y, WU D L. A study on stratospheric gravity waves generated by Typhoon Ewiniar:numerical simulations and satellite observations[J]. J. Geophys. Res., 2009, 114(D22):D22104. DOI: 10.1029/2009JD011971
|
[16] |
CHEN Dan, CHEN Zeyu Y, LÜ Daren. Simulation of the stratospheric gravity waves generated by the Typhoon Matsa in 2005[J]. Sci. China Earth Sci., 2012, 55(4):602-610. DOI:10.1007/s11430-011-4303-1(陈丹, 陈泽宇, 吕达仁. 台风"麦莎" (Matsa)诱发平流层重力波的数值模拟[J]. 中国科学:地球科学, 2011, 41(12):1786-1794)
|
[17] |
CHEN Dan, CHEN Zeyu, LÜ Daren. Spatiotemporal spectrum and momentum flux of the stratospheric gravity waves generated by a typhoon[J]. Sci. China Earth Sci., 2013, 56(1):54-62. DOI:10.1007/s11430-012-4502-4(陈丹, 陈泽宇, 吕达仁. 台风重力波的谱结构和动量通量特征分析[J]. 中国科学:地球科学, 2013, 43(5):874-882)
|
[18] |
ALEXANDER M J, HOLTON J R. On the spectrum of vertically propagating gravity waves generated by a transient heat source[J]. Atmos. Chem. Phys. Dis., 2004, 4(1):1063-1090
|
[19] |
ALEXANDER M J, TEITELBAUM H. Three-dimensional properties of Andes mountain waves observed by satellite:a case study[J]. J. Geophys. Res., 2011, 116(D23):D23110. DOI: 10.1029/2011JD016151
|
[20] |
GONG J, WU D L, ECKERMANN S D. Gravity wave variances and propagation derived from AIRS radiances[J]. Atmos. Chem. Phys., 2012, 12(4):1701-1720
|
[21] |
GONG Jie, YUE Jia, WU D L. Global survey of concentric gravity waves in AIRS images and ECMWF analysis[J]. J. Geophys. Res., 2015, 120(6):2210-2228
|
[22] |
YAO Zengliang, ZHAO Zengliang, HAN Zhigang. Stratospheric gravity waves during summer over East Asia derived from AIRS observations[J]. Chin. J. Geophys., 2015, 58(4):1121-1134(姚志刚, 赵增亮, 韩志刚. AIRS观测的东亚夏季平流层重力波特征[J]. 地球物理学报, 2015, 58(4):1121-1134)
|
[23] |
HONG Jun, YAO Zhigang, HAN Zhigang, et al. Numerical simulations and AIRS observations of stratospheric gravity waves induced by the Typhoon Muifa[J]. Chin. J. Geophys., 2015, 58(7):2283-2293(洪军, 姚志刚, 韩志刚, 等. 台风"梅花"诱发平流层重力波的数值模拟与AIRS观测[J]. 地球物理学报, 2015, 58(7):2283-2293)
|
[24] |
ZHENG Chongwei, ZHOU Lin, SONG Shuai, et al. Simulation of the wave field caused by 1307 typhoon "Soulik"[J]. J. Xiamen Univ.:Nat. Sci., 2014, 53(2):257-262
|
[25] |
LANE T P, KNIEVEL J C. Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection[J]. J. Atmos. Sci., 2005, 62(9):3408-3419
|
[26] |
UNTCH A, MILLER M, HORTAL M, et al. Towards a global meso-scale model:the high-resolution system T799L91 and T399L62EPS[R]. Newsl. 108. Eur. Cent. for Medium-Range Weather Forecast. Reading, UK, 2006:6-13
|
[27] |
PLOUGONVEN R, TEITELBAUM H. Comparison of a large-scale inertia-gravity wave as seen in the ECMWF analyses and from radiosondes[J]. Geophys. Res. Lett., 2003, 30(18):1954. DOI: 10.1029/2003GL017716
|
[28] |
ALEXANDER M J, TEITELBAUM H. Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula[J]. J. Geophys. Res., 2007, 112(D21):D21103. DOI: 10.1029/2006JD008368
|
[29] |
MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave[J]. J. Geophys. Res., 1997, 102(D14):16663-16682
|
[30] |
DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J. Atmos. Sci., 1989, 46(20):3077-3107
|
[31] |
KAIN J S. The Kain Fritsch convective parameterization:an update[J]. J. Appl. Meteor., 2004, 43(1):170-181
|
[32] |
HONG Songyou, NOHY, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 2006, 134(9):2318-2341
|
[33] |
ANDREWS D G, HOLTON J R, LEOVY C B. Middle Atmosphere Dynamics[M]. Orlando:Academic Press, 1987:189
|
[34] |
LIU Xiao, XU Jiyao. Nonlinear interactions between gravity waves and background winds[J]. Prog. Nat. Sci., 2007, 17(6):639-644
|
[35] |
SONG I S, CHUN H Y. Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. I:theory[J]. J. Atmos. Sci., 2005, 62(1):107-124
|
[36] |
BERES J H, ALEXANDER M J, HOLTON J R. Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves[J]. J. Atmos. Sci., 2002, 59(11):1805-1824
|
[37] |
KIM S Y, CHUN H Y. Stratospheric gravity waves generated by Typhoon Saomai (2006):numerical modeling in a moving frame following the typhoon[J]. J. Atmos. Sci., 2010, 67(11):3617-3636
|
[38] |
DEMARIA M. The effect of vertical shear on tropical cyclone intensity change[J]. J. Atmos. Sci., 1996, 53(14):2076-2087
|
[39] |
GALLINA G M, VELDEN C S. Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information[C]//Preprints of the 25th Conference on Hurricanes and Tropical Meteorology. San Diego, CA:American Meteorological Society, 2002:172-173
|
[40] |
KIM S Y, CHUN H Y. Effects of a convectively forced gravity wave drag parameterization on a mesoscale convective system simulated by a mesoscale model (MM5)[J]. J. Korean Meteor. Soc., 2007, 43(2):111-131
|
[41] |
ZOU Xiaolei, WENG Fuzhong, TALLAPRAGADA V, et al. Satellite data assimilation of upper-level sounding channels in HWRF with two different model tops[J]. J. Meteor. Res., 2015, 29(1):1-27
|
[42] |
WU D L, PREUSSE P, ECKERMANN S D, et al. Remote sounding of at mospheric gravity waves with satellite limb and nadir techniques[J]. Adv. Space Res., 2006, 37(12):2269-2277
|
[43] |
AUMANN H H, CHAHINE M T, GAUTIER C, et al. AIRS/AMSU/HSB on the Aqua Mission:design, science objectives, data products, and processing systems[J]. IEEE Trans. Geosci. Remote Sens., 2003, 41(2):253-264
|
[44] |
CHAHINE M T, PAGANO T S, AUMANN H H, et al. AIRS:improving weather forecasting and providing new data on greenhouse gases[J]. Bull. Am. Meteor. Soc., 2006, 87(7):911-926
|
[45] |
HOFFMANN L, ALEXANDER M J. Occurrence frequency of convective gravity waves during the North American thunderstorm season[J]. J. Geophys. Res., 2010, 115(D20):D20111. DOI: 10.1029/2010JD014401
|
[46] |
WU D L. Mesoscale gravity wave variances from AMSU-A radiances[J]. Geophys. Res. Lett., 2004, 31(12):L12114
|
[47] |
LINDZEN R S. Turbulence and stress owing to gravity wave and tidal breakdown[J]. J. Geophys. Res., 1981, 86(C10):9707-9714
|
[48] |
MINGF C, CHEN Z, ROUX F. Analysis of gravity-waves produced by intense tropical cyclones[J]. Ann. Geophys., 2010, 28(2):531-547
|
[49] |
SCHROEDER S, PREUSSE P, ERN M, et al. Gravity waves resolved in ECMWF and measured by SABER[J]. Geophys. Res. Lett., 2009, 36(10):L10805. DOI: 10.1029/2008GL037054
|
[50] |
LANE T P, SHARMAN R D, CLARK T L, et al. An investigation of turbulence generation mechanisms above deep convection[J]. J. Atmos. Sci., 2003, 60(10):1297-1321
|