留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卫星观测台风重力波数值模拟与直接对比验证

姚志刚 洪军 韩志刚 赵增亮

姚志刚, 洪军, 韩志刚, 赵增亮. 卫星观测台风重力波数值模拟与直接对比验证[J]. 空间科学学报, 2018, 38(2): 188-200. doi: 10.11728/cjss2018.02.188
引用本文: 姚志刚, 洪军, 韩志刚, 赵增亮. 卫星观测台风重力波数值模拟与直接对比验证[J]. 空间科学学报, 2018, 38(2): 188-200. doi: 10.11728/cjss2018.02.188
YAO Zhigang, HONG Jun, HAN Zhigang, ZHAO Zengliang. Numerical Simulation of Typhoon-generated Gravity Waves Observed by Satellite and its Direct Validationormalsize[J]. Journal of Space Science, 2018, 38(2): 188-200. doi: 10.11728/cjss2018.02.188
Citation: YAO Zhigang, HONG Jun, HAN Zhigang, ZHAO Zengliang. Numerical Simulation of Typhoon-generated Gravity Waves Observed by Satellite and its Direct Validationormalsize[J]. Journal of Space Science, 2018, 38(2): 188-200. doi: 10.11728/cjss2018.02.188

卫星观测台风重力波数值模拟与直接对比验证

doi: 10.11728/cjss2018.02.188
基金项目: 

国家自然科学基金项目(NSFC41575031),中国博士后基金项目(2015M580124),部级重点课题项目(QX2015040311A12005)和国家重大专项课题项目(GFZX04021201)共同资助

详细信息
    作者简介:

    姚志刚,E-mail:yzg biam@163.com

  • 中图分类号: P403

Numerical Simulation of Typhoon-generated Gravity Waves Observed by Satellite and its Direct Validationormalsize

  • 摘要: 以ECMWF的T799资料作为WRF-ARW(V3.5)初始场,对卫星高光谱红外大气垂直探测器AIRS观测的2013年超强台风苏力激发平流层重力波过程进行数值模拟,并利用卫星观测对数值模拟结果进行了直接对比验证.数值模拟表明,该台风诱发的重力波在20~40km高度逆着东风背景流向东向上传播,在水平方向呈半圆弧状;大气的垂直扰动随着高度的增加而增强,在40km高度上达到0.5m·s-1.基于三维傅里叶变换的波谱分析表明,平流层重力波水平波长中心值在500km附近,周期为3~5h,垂直波长主要为10~26km.分析表明,在18~40km高度的净纬向动量通量为6.7×10-4~1.89×10-3Pa,背景流强迫计算值为-0.23~1.21m·s-1·d-1,且在18km和40km高度的数值较大.最后,基于辐射传输模式计算的直接对比表明,卫星观测与数值模拟同时揭示了激发的平流层波动可传至40km以上高度及距台风中心2000km以外的区域,且不同资料得到的波动形态、方位以及水平尺度具有较好的一致性.

     

  • [1] FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1):1003
    [2] YUE Jia, HOFFMANN L, ALEXANDER M J. Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment[J]. J. Geophys. Res., 2013, 118(8):3178-3191
    [3] SUZUKI S, VADAS S L, SHIOKAWA K, et al. Typhoon-induced concentric airglow structures in the mesopause region[J]. Geophys. Res. Lett., 2013, 40(22):5983-5987
    [4] YUE Jia, MILLER S D, HOFFMANN L, et al. Stratospheric and mesospheric concentric gravity waves over tropical cyclone Mahasen:joint AIRS and VⅡRS satellite observations[J]. J. Atmos. Solar-Terr. Phys., 2014, 119:83-90
    [5] XU Jiyao, LI Qinzeng, YUE Jia, et al. Concentric gravity waves over northern China observed by an airglow imager network and satellites[J]. J. Geophys. Res., 2015, 120(21):11058-11078
    [6] TSUTSUI M, OGAWA T. HF Doppler observation of ionospheric effects due to typhoons[J]. Rep. Ionosph. Space Res. Jpn., 1973, 27:121-123
    [7] LIU Yimou, WANG Jingsong, SUO Yicheng. Effects of typhoon on the ionosphere[J]. Adv. Geosci., 2006, 2:351-360
    [8] MAO Tian, WANG Jinsong, YANG Guanglin, et al. Effects of typhoon Matsaon ionospheric TEC[J]. Chin. Sci. Bull., 2010, 55(8):712-717(毛田, 王劲松, 杨光林, 等. 台风"麦莎"对电离层TEC的影响[J]. 科学通报, 2009, 54(24):3858-3863)
    [9] YU Tao, WANG Yungang, MAO Tian, et al. A case study of the variation of ionospheric parameter during typhoons at Xiamen[J]. Acta Meteor. Sin., 2010, 68(4):569-576(余涛, 王云冈, 毛田, 等. 台风期间厦门电离层变化的一次特例分析[J]. 气象学报, 2010, 68(4):569-576)
    [10] SHUAI Jing, ZHANG Shaodong, HUANG Chunming, et al. Climatology of global gravity wave activity and dissipation revealed by SABER/TIMED temperature observations[J]. Sci. China Tech., 2014, 57(5):998-1009
    [11] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J. Medium-scale traveling ionospheric disturbances affecting GPS measurements:spatial and temporal analysis[J]. J. Geophys. Res., 2006, 111(A7):A07S11
    [12] HUNGR J, TSAO Y D, LIU J M, et al. Lower thermospheric density fluctuations during the time period of Typhoon Dinah[C]//27th Aerospace Sciences Meeting. Reno, NV, USA:AIAA, 1989:10
    [13] MING F C, IBRAHIM C, BARTHE C, et al. Observation and a numerical study of gravity waves during tropical cyclone Ivan (2008)[J]. Atmos. Chem. Phys., 2014, 14(2):641-658
    [14] KIM S Y, CHUN H Y, BAIK J J. A numerical study of gravity waves induced by convection associated with Typhoon Rusa[J]. Geophys. Res. Lett., 2005, 32(24):L24816. DOI: 10.1029/2005GL024662
    [15] KIM S Y, CHUN H Y, WU D L. A study on stratospheric gravity waves generated by Typhoon Ewiniar:numerical simulations and satellite observations[J]. J. Geophys. Res., 2009, 114(D22):D22104. DOI: 10.1029/2009JD011971
    [16] CHEN Dan, CHEN Zeyu Y, LÜ Daren. Simulation of the stratospheric gravity waves generated by the Typhoon Matsa in 2005[J]. Sci. China Earth Sci., 2012, 55(4):602-610. DOI:10.1007/s11430-011-4303-1(陈丹, 陈泽宇, 吕达仁. 台风"麦莎" (Matsa)诱发平流层重力波的数值模拟[J]. 中国科学:地球科学, 2011, 41(12):1786-1794)
    [17] CHEN Dan, CHEN Zeyu, LÜ Daren. Spatiotemporal spectrum and momentum flux of the stratospheric gravity waves generated by a typhoon[J]. Sci. China Earth Sci., 2013, 56(1):54-62. DOI:10.1007/s11430-012-4502-4(陈丹, 陈泽宇, 吕达仁. 台风重力波的谱结构和动量通量特征分析[J]. 中国科学:地球科学, 2013, 43(5):874-882)
    [18] ALEXANDER M J, HOLTON J R. On the spectrum of vertically propagating gravity waves generated by a transient heat source[J]. Atmos. Chem. Phys. Dis., 2004, 4(1):1063-1090
    [19] ALEXANDER M J, TEITELBAUM H. Three-dimensional properties of Andes mountain waves observed by satellite:a case study[J]. J. Geophys. Res., 2011, 116(D23):D23110. DOI: 10.1029/2011JD016151
    [20] GONG J, WU D L, ECKERMANN S D. Gravity wave variances and propagation derived from AIRS radiances[J]. Atmos. Chem. Phys., 2012, 12(4):1701-1720
    [21] GONG Jie, YUE Jia, WU D L. Global survey of concentric gravity waves in AIRS images and ECMWF analysis[J]. J. Geophys. Res., 2015, 120(6):2210-2228
    [22] YAO Zengliang, ZHAO Zengliang, HAN Zhigang. Stratospheric gravity waves during summer over East Asia derived from AIRS observations[J]. Chin. J. Geophys., 2015, 58(4):1121-1134(姚志刚, 赵增亮, 韩志刚. AIRS观测的东亚夏季平流层重力波特征[J]. 地球物理学报, 2015, 58(4):1121-1134)
    [23] HONG Jun, YAO Zhigang, HAN Zhigang, et al. Numerical simulations and AIRS observations of stratospheric gravity waves induced by the Typhoon Muifa[J]. Chin. J. Geophys., 2015, 58(7):2283-2293(洪军, 姚志刚, 韩志刚, 等. 台风"梅花"诱发平流层重力波的数值模拟与AIRS观测[J]. 地球物理学报, 2015, 58(7):2283-2293)
    [24] ZHENG Chongwei, ZHOU Lin, SONG Shuai, et al. Simulation of the wave field caused by 1307 typhoon "Soulik"[J]. J. Xiamen Univ.:Nat. Sci., 2014, 53(2):257-262
    [25] LANE T P, KNIEVEL J C. Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection[J]. J. Atmos. Sci., 2005, 62(9):3408-3419
    [26] UNTCH A, MILLER M, HORTAL M, et al. Towards a global meso-scale model:the high-resolution system T799L91 and T399L62EPS[R]. Newsl. 108. Eur. Cent. for Medium-Range Weather Forecast. Reading, UK, 2006:6-13
    [27] PLOUGONVEN R, TEITELBAUM H. Comparison of a large-scale inertia-gravity wave as seen in the ECMWF analyses and from radiosondes[J]. Geophys. Res. Lett., 2003, 30(18):1954. DOI: 10.1029/2003GL017716
    [28] ALEXANDER M J, TEITELBAUM H. Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula[J]. J. Geophys. Res., 2007, 112(D21):D21103. DOI: 10.1029/2006JD008368
    [29] MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave[J]. J. Geophys. Res., 1997, 102(D14):16663-16682
    [30] DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J. Atmos. Sci., 1989, 46(20):3077-3107
    [31] KAIN J S. The Kain Fritsch convective parameterization:an update[J]. J. Appl. Meteor., 2004, 43(1):170-181
    [32] HONG Songyou, NOHY, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 2006, 134(9):2318-2341
    [33] ANDREWS D G, HOLTON J R, LEOVY C B. Middle Atmosphere Dynamics[M]. Orlando:Academic Press, 1987:189
    [34] LIU Xiao, XU Jiyao. Nonlinear interactions between gravity waves and background winds[J]. Prog. Nat. Sci., 2007, 17(6):639-644
    [35] SONG I S, CHUN H Y. Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. I:theory[J]. J. Atmos. Sci., 2005, 62(1):107-124
    [36] BERES J H, ALEXANDER M J, HOLTON J R. Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves[J]. J. Atmos. Sci., 2002, 59(11):1805-1824
    [37] KIM S Y, CHUN H Y. Stratospheric gravity waves generated by Typhoon Saomai (2006):numerical modeling in a moving frame following the typhoon[J]. J. Atmos. Sci., 2010, 67(11):3617-3636
    [38] DEMARIA M. The effect of vertical shear on tropical cyclone intensity change[J]. J. Atmos. Sci., 1996, 53(14):2076-2087
    [39] GALLINA G M, VELDEN C S. Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information[C]//Preprints of the 25th Conference on Hurricanes and Tropical Meteorology. San Diego, CA:American Meteorological Society, 2002:172-173
    [40] KIM S Y, CHUN H Y. Effects of a convectively forced gravity wave drag parameterization on a mesoscale convective system simulated by a mesoscale model (MM5)[J]. J. Korean Meteor. Soc., 2007, 43(2):111-131
    [41] ZOU Xiaolei, WENG Fuzhong, TALLAPRAGADA V, et al. Satellite data assimilation of upper-level sounding channels in HWRF with two different model tops[J]. J. Meteor. Res., 2015, 29(1):1-27
    [42] WU D L, PREUSSE P, ECKERMANN S D, et al. Remote sounding of at mospheric gravity waves with satellite limb and nadir techniques[J]. Adv. Space Res., 2006, 37(12):2269-2277
    [43] AUMANN H H, CHAHINE M T, GAUTIER C, et al. AIRS/AMSU/HSB on the Aqua Mission:design, science objectives, data products, and processing systems[J]. IEEE Trans. Geosci. Remote Sens., 2003, 41(2):253-264
    [44] CHAHINE M T, PAGANO T S, AUMANN H H, et al. AIRS:improving weather forecasting and providing new data on greenhouse gases[J]. Bull. Am. Meteor. Soc., 2006, 87(7):911-926
    [45] HOFFMANN L, ALEXANDER M J. Occurrence frequency of convective gravity waves during the North American thunderstorm season[J]. J. Geophys. Res., 2010, 115(D20):D20111. DOI: 10.1029/2010JD014401
    [46] WU D L. Mesoscale gravity wave variances from AMSU-A radiances[J]. Geophys. Res. Lett., 2004, 31(12):L12114
    [47] LINDZEN R S. Turbulence and stress owing to gravity wave and tidal breakdown[J]. J. Geophys. Res., 1981, 86(C10):9707-9714
    [48] MINGF C, CHEN Z, ROUX F. Analysis of gravity-waves produced by intense tropical cyclones[J]. Ann. Geophys., 2010, 28(2):531-547
    [49] SCHROEDER S, PREUSSE P, ERN M, et al. Gravity waves resolved in ECMWF and measured by SABER[J]. Geophys. Res. Lett., 2009, 36(10):L10805. DOI: 10.1029/2008GL037054
    [50] LANE T P, SHARMAN R D, CLARK T L, et al. An investigation of turbulence generation mechanisms above deep convection[J]. J. Atmos. Sci., 2003, 60(10):1297-1321
  • 加载中
计量
  • 文章访问数:  909
  • HTML全文浏览量:  1
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-08
  • 修回日期:  2017-06-25
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回