留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WSA太阳风经验模型及其应用

杨子才 沈芳 杨易 冯学尚

杨子才, 沈芳, 杨易, 冯学尚. WSA太阳风经验模型及其应用[J]. 空间科学学报, 2018, 38(3): 285-295. doi: 10.11728/cjss2018.03.285
引用本文: 杨子才, 沈芳, 杨易, 冯学尚. WSA太阳风经验模型及其应用[J]. 空间科学学报, 2018, 38(3): 285-295. doi: 10.11728/cjss2018.03.285
YANG Zicai, SHEN Fang, YANG Yi, FENG Xueshang. Analysis of Present Research on the WSA Solar Wind Model[J]. Chinese Journal of Space Science, 2018, 38(3): 285-295. doi: 10.11728/cjss2018.03.285
Citation: YANG Zicai, SHEN Fang, YANG Yi, FENG Xueshang. Analysis of Present Research on the WSA Solar Wind Model[J]. Chinese Journal of Space Science, 2018, 38(3): 285-295. doi: 10.11728/cjss2018.03.285

WSA太阳风经验模型及其应用

doi: 10.11728/cjss2018.03.285 cstr: 32142.14.cjss2018.03.285
基金项目: 

国家自然科学基金项目(41231068,41474152,41531073,41774184),国家重点实验室专项研究基金和国家"万人计划"青年拔尖人才项目共同资助

详细信息
    作者简介:
    • 沈芳,E-mail:fshen@spaceweather.ac.cn
  • 中图分类号: P353

Analysis of Present Research on the WSA Solar Wind Model

  • 摘要: Wang-Sheely-Arge (WSA)模型是对准稳态太阳风的经验和物理相结合的描述,其利用观测的日面磁图作为输入,可以提前3到4天预测L1点处的太阳风速度和行星际磁场极性.WSA模型是在WS模型的基础上经过若干改进形成的实时预报模式,之后又借鉴Distance from the Coronal Hole Boundary (DCHB)模型的参数,进一步改进了太阳风速度关系式,形成了目前常见的形式.WSA经验模型由日冕磁场模型、太阳风速度关系式和一维运动学模型三部分组成.在实际应用过程中,基本步骤包括观测磁图预处理、日冕三维磁场反演、计算日冕磁场参数、计算太阳风的速度分布和将太阳风映射到1AU等环节.在发展过程中,WSA模型经历了一些细节上的调整变化,例如观测磁图数据的来源、日冕磁场模型的类型、经验速度关系中自由系数的取值等.许多研究对如何改善模型的预报效果进行了探索.

     

  • [1] ARGE C N, PIZZO V J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates[J]. J. Geophys. Res., 2000, 105(A5):10465-10479
    [2] ARGE C N, ODSTRCIL D, PIZZO V J, et al. Improved method for specifying solar wind speed near the sun[C]//Proceedings of the Tenth International Solar Wind Conference. New York:AIP, 2003, 679:190-193
    [3] KRIEGER A S, TIMOTHY A F, ROELOF E C. A coronal hole and its identification as the source of a high velocity solar wind stream[J]. Solar Phys., 1973, 29(2):505-525
    [4] NOLTE J T, KRIEGER A S, TIMOTHY A F, et al. Coronal holes as sources of solar wind[J]. Solar Phys., 1976, 46(2):303-322
    [5] LEVINE R H, ALTSCHULER M D, HARVEY J W. Solar sources of the interplanetary magnetic field and solar wind[J]. J. Geophys. Res., 1977, 82(1):1061-1065
    [6] WANG Y M, SHEELEY JR N R. Solar wind speed and coronal flux-tube expansion[J]. Astrophys. J., 1990, 355:726-732
    [7] ALTSCHULER M D, NEWKIRK JR G. Magnetic fields and the structure of the solar corona. I:methods of calculating coronal fields[J]. Solar Phys., 1969, 9(1):131-149
    [8] SCHATTEN K H, WILCOX J M, NESS N F. A model of interplanetary and coronal magnetic fields[J]. Solar Phys., 1969, 6(3):442-455
    [9] WANG Y M, SHEELEY JR N R, PHILLIPS J L, et al. Solar wind stream interactions and the wind speed-expansion factor relationship[J]. Astrophys. J., 1997, 488 (1):L51-L54
    [10] RILEY P, LINKER J A, MIKIĆ Z. An empirically-driven global MHD model of the solar corona and inner heliosphere[J]. J. Geophys. Res., 2001, 106(A8):15889-15901
    [11] SCHATTEN K H. Current sheet magnetic model for the solar corona[J]. Cosmic Electrodyn., 1971, 2:232-245
    [12] ARGE C N, LUHMANN J G, ODSTRCIL D, et al. Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME[J]. J. Atmos. Solar-Terres. Phys., 2004, 66(15-16):1295-1309
    [13] SCHWENN R. Solar wind sources and their variations over the solar cycle[J]. Space Sci. Rev., 2006, 124(1/2/3/4):51-76
    [14] RILEY P, BEN-NUN M, LINKER J A, et al. A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms[J]. Solar Phys., 2014, 289(3):769-792
    [15] ZHAO X, HOEKSEMA J T. Predicting the heliospheric magnetic field using the current sheet-source surface model[J]. Adv. Space Res., 1995, 16(9):181-184
    [16] LOW B C. Some recent developments in the theoretical dynamics of magnetic fields[J]. Solar Phys., 1985, 100(1-2):309-331
    [17] TRAN T. Improving the Predictions of Solar Wind Speed and Interplanetary Magnetic Field at the Earth[D]. Los Angeles:University of California, 2009
    [18] MCGREGOR S L, HUGHES W J, ARGE C N, et al. The distribution of solar wind speeds during solar minimum:calibration for numerical solar wind modeling constraints on the source of the slow solar wind[J]. J. Geophys. Res., 2011, 116(A3):A03101
    [19] WIENGARTEN T, KLEIMANN J, FICHTNER H, et al. Cosmic ray transport in heliospheric magnetic structures. I. Modeling background solar wind using the CRONOS magnetohydrodynamic code[J]. Astrophys. J., 2014, 788(1):80
    [20] EDWARDS S J, YEATES A R, BOCQUET F X, et al. Influence of non-potential coronal magnetic topology on solar-wind models[J]. Solar Phys., 2015, 290(10):2791-2808
    [21] RILEY P, LINKER J A, ARGE C N. On the role played by magnetic expansion factor in the prediction of solar wind speed[J]. Space Wea., 2015, 13(3):154-169
    [22] OWENS M J, ARGE C N, SPENCE H E, et al. An event-based approach to validating solar wind speed predictions:high-speed enhancements in the Wang-Sheeley-Arge model[J]. J. Geophys. Res., 2005, 110(A12):A12105
    [23] MCGREGOR S L, HUGHES W J, ARGE C N, et al. Analysis of the magnetic field discontinuity at the potential field source surface and Schatten Current Sheet interface in the Wang-Sheeley-Arge model[J]. J. Geophys. Res., 2008, 113(A8):A08112
    [24] SUN Xudong, HOEKSEMA J T. A comparative study of different approaches and potential improvement to modeling the solar wind[C]//American Astronomical Society Meeting. Washington:American Astronomical Society, 2007, 39:142
    [25] SUN X, HOEKSEMA J T. Modeling Solar wind Using the Newly Calibrated MDI Magnetic Field:1996-2008[R]. Florida:AGU Spring Meeting, 2008
    [26] SUN X, LIU Y, HOEKSEMA J T, et al. A new method for polar field interpolation[J]. Solar Phys., 2011, 270(1):9-22
    [27] SVALGAARD L, DUVALL JR T L, SCHERRER P H. The strength of the Sun's polar fields[J]. Solar Phys., 1978, 58(2):225-239
    [28] WANG Y M, SHEELEY JR N R. Solar implications of ULYSSES interplanetary field measurements[J]. Astrophys. J., 1995, 447:L143-L146
    [29] ARGE C N, HENNEY C J, KOLLER J, et al. Air force data assimilative photospheric flux transport (ADAPT) model[C]//Twelfth International Solar Wind Conference. Saint-Malo, France:AIP, 2010, 1216:343-346
    [30] ARGE C N, HENNEY C J, KOLLER J, et al. Improving data drivers for coronal and solar wind models[C]//Proceedings of the 5th International Conference of Numerical Modeling of Space Plasma Flows. California:Astronomical Society of the Pacific, 2011, 444:99
    [31] ARGE C N, HENNEY C J, HERNÁNDEZ I G, et al. Modeling the corona and solar wind using ADAPT maps that include far-side observations[C]//Proceedings of the Thirteenth International Solar Wind Conference. New York:AIP, 2013, 1539:11-14
    [32] PODUVAL B, ZHAO X P. Validating solar wind prediction using the current sheet source surface model[J]. Astrophys. J. Lett., 2014, 782:L22
    [33] COHEN O. Quantifying the difference between the flux-tube expansion factor at the source surface and at the Alfvén surface using a global MHD model for the solar wind[J]. Solar Phys., 2015, 290(8):2245-2263
    [34] JONES S I, DAVILA J M, URITSKY V M. Image-optimized coronal magnetic field models[J]. Astrophys. J., 2017, 844(2):93
    [35] JONES S I, DAVILA J M, URITSKY V M. Optimizing global coronal magnetic field models using image-based constraints[J]. Astrophys. J., 2016, 820(2):113
    [36] PODUVAL B, ZHAO Xuepu. Discrepancies in the prediction of solar wind using potential field source surface model:an investigation of possible sources[J]. J. Geophys. Res., 2004, 109(A8):A08102
    [37] TOTH G, VAN DER HOLST B, HUANG Z G. Obtaining potential field solutions with spherical harmonics and finite differences[J]. Astrophys. J., 2011, 732(2):102
    [38] HOEKSEMA J T, WILCOX J M, SCHERRER P H. The structure of the heliospheric current sheet:1978-1982[J]. J. Geophys. Res., 1983, 88(A12):9910-9918
    [39] SUN Xudong, HOEKSEMA J T. A new source surface radius in potential field modeling during the current weak solar minimum[C]//AGU Fall Meeting. Washington DC:AGU, 2009
    [40] LEE C O, LUHMANN J G, HOEKSEMA J T, et al. Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods:IMF comparison suggests the source surface should be lowered[J]. Solar Phys., 2011, 269(2):367-388
    [41] ARDEN W M, NORTON A A, SUN X. A "breathing" source surface for cycles 23 and 24[J]. J. Geophys. Res., 2014, 119(3):1476-1485
    [42] ZHAO X P, HOEKSEMA J T, RICH N B. Modeling the radial variation of coronal streamer belts during sunspot ascending phase[J]. Adv. Space Res., 2002, 29(3):411-416
    [43] ZHAO X P, HOEKSEMA J T. The magnetic field at the inner boundary of the heliosphere around solar minimum[J]. Solar Phys., 2010, 266(2):379-390
    [44] RILEY P, LUHMANN J G. Interplanetary signatures of unipolar streamers and the origin of the slow solar wind[J]. Solar Phys., 2012, 277(2):355-373
    [45] RILEY P, LIONELLO R. Mapping solar wind streams from the Sun to 1AU:a comparison of techniques[J]. Solar Phys., 2011, 270(2):575-592
    [46] ODSTRCIL D. Modeling 3-D solar wind structure[J]. Adv. Space Res., 2003, 32(4):497-506
    [47] FRY C D, DRYER M, SMITH Z, et al. Forecasting solar wind structures and shock arrival times using an ensemble of models[J]. J. Geophys. Res., 2003, 108(A2):1070
    [48] DETMAN T, SMITH Z, DRYER M, et al. A hybrid heliospheric modeling system:background solar wind[J]. J. Geophys. Res., 2006, 111(A7):A07102
    [49] WIENGARTEN T, KLEIMANN J, FICHTNER H, et al. MHD simulation of the inner-heliospheric magnetic field[J]. J. Geophys. Res., 2013, 118(1):29-44
    [50] MERKIN V G, LYON J G, LARIO D, et al. Time-dependent magnetohydrodynamic simulations of the inner heliosphere[J]. J. Geophys. Res., 2015, 121(4):2866-2890
  • 加载中
计量
  • 文章访问数:  1869
  • HTML全文浏览量:  119
  • PDF下载量:  596
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2017-08-23
  • 修回日期:  2017-12-19
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回