留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下三角形微通道内冷凝换热分析

雷雨川 陈振乾

雷雨川, 陈振乾. 微重力下三角形微通道内冷凝换热分析[J]. 空间科学学报, 2018, 38(3): 368-372. doi: 10.11728/cjss2018.03.368
引用本文: 雷雨川, 陈振乾. 微重力下三角形微通道内冷凝换热分析[J]. 空间科学学报, 2018, 38(3): 368-372. doi: 10.11728/cjss2018.03.368
LEI Yuchuan, CHEN Zhenqian. Analysis of Condensation Heat Transfer in Curved Triangle Microchannel under Microgravity[J]. Chinese Journal of Space Science, 2018, 38(3): 368-372. doi: 10.11728/cjss2018.03.368
Citation: LEI Yuchuan, CHEN Zhenqian. Analysis of Condensation Heat Transfer in Curved Triangle Microchannel under Microgravity[J]. Chinese Journal of Space Science, 2018, 38(3): 368-372. doi: 10.11728/cjss2018.03.368

微重力下三角形微通道内冷凝换热分析

doi: 10.11728/cjss2018.03.368 cstr: 32142.14.cjss2018.03.368
基金项目: 

载人航天工程空间应用系统天舟一号货运飞船科学实验项目(TZYY08001),国家自然科学基金项目(51606037)和江苏省自然科学基金项目(BK20160687)共同资助

详细信息
    作者简介:
    • 雷雨川,E-mail:904797813@qq.com
    通讯作者:
    • 陈振乾,E-mail:zqchen@seu.edu.cn
  • 中图分类号: V254

Analysis of Condensation Heat Transfer in Curved Triangle Microchannel under Microgravity

  • 摘要: 采用VOF模型和自定义函数的方法对三角形微通道内冷凝换热特性进行了数值模拟研究.为验证模型的合理性,将计算得到的传热系数与文献中经验关联式的结果进行对比.分析了重力和表面张力对气液界面分布和传热性能的影响.结果表明,重力对微通道内气液界面分布和截面平均传热系数的影响很小.表面张力在非圆形微通道内的冷凝过程中发挥主导作用.在表面张力作用下,更多的冷凝液流向尖角,使壁面附近液膜厚度变薄,传热阻力减小,传热系数增强.

     

  • [1] TUCKERMAN D B, PEASE R F. High performance heat sinking for VLSI[J]. Elec. Device Lett., 1981, 2(5):126-129
    [2] CAVALLINI A, DORETTI L, MATKOVIC M, et al. Update on condensation heat transfer and pressure drop in minichannels[J]. Heat Trans. Eng., 2006, 27:74-87
    [3] GARIMELLA S, KILLION J D, COLEMANN J W. An experimentally validated model for two-phase pressure drop in the intermittent flow regime for circular micrchannels[J]. ASME J. Fluids Eng., 2002, 124:205-214
    [4] LI Panpan, CHEN Zhenqian. Effect of gravity during condensation of R134a in a rectangular microchannel[J]. Chin. J. Space Sci., 2006, 36(4):525(李盼盼, 陈振乾. 重力对R134a在矩形小通道内冷凝的影[J]. 空间科学学报, 2006, 36(4):525)
    [5] CHEN Yongping, WU Jiafeng, SHI Mingheng, et al. Three dimensional simulation for steady annular condensation in rectangular microchannels[J]. J. Chem. Ind. Eng., 2008, 59(8):1923-1929
    [6] AGARWAL A, BANDHAUER T M, GARIMELLA S. Measuring and modeling of condensation heat transfer in noncircular microchannels[J]. Int. J. Refrig., 2010, 33:1169-1179
    [7] DA RIVA E, DEL COL D, CAVALLINI A. Modeling of condensation in a circular minichannel by means of the VOF method[C]//Proceedings of the 14th International Heat Transfer Conference. Washington, DC, USA, 2010
    [8] NEBULONI S, THOME J R. Numerical modeling of laminar annular film condensation for different channel shapes[J]. Int. J. Heat Mass Trans., 2010, 53:2615-2627
    [9] OHADI M, CHOO K, DESSIATOUN S, CETEGEN E. Next Generation Microchannel Heat Exchangers[M]. New York:Springer, 2013:33-65
    [10] ZHAO T S, LIAO Q. Theoretical analysis of film condensation heat transfer inside vertical mini triangular channels[J]. Int. J. Heat Mass Trans., 2002, 45(13):2829-2842
    [11] MGHARI H EL, ASBIK M, LOUAHLIA H. Condensation heat transfer enhancement in a horizontal non-circular microchannel[J]. Appl. Therm. Eng., 2014, 64:358-370
    [12] WU J F, CHEN Y P, SHI M H, et al. Three-dimensional numerical simulation for annular condensation in rectangular microchannels[J]. Nanosc. Microsc. Thermophys. Eng., 2009, 13:13-29
    [13] WU Jiafeng, CHEN Yongping, SHI Mingheng, et al. Simulation for annular condensation flow in rectangular microchannels[J]. J. Eng. Thermophys., 2008, 29(11):1924-1926
    [14] WANG H S, ROSE J W. A theory of film condensation in horizontal noncircular section microchannels[J]. ASME J. Heat Trans., 2005, 127:1096-1105
    [15] LEMMON E W, HUBER M L, MCLINDEN M O. NIST Standard Reference Database 23:Reference Fluid Thermodynamic and Transport Properties, Version 9.0[R]. Gaithersburg:National Institute of Standards and Technology, 2010
    [16] HIRT C W, NICHOLS B D. Volume of Fluid (VOF) method for the dynamics of free boundaries[J]. J. Comput. Phys., 1981, 39:201-225
    [17] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. J. Comput. Phys., 1992, 100:335-354
    [18] WILCOX D C. Turbulence Modeling for CFD (2nd ed)[M]. California:DCW Industries, Inc., 1998
    [19] LEE W H. A pressure iteration scheme for two-phase flow modeling[M]//Multiphase Transport Fundamentals, Reactor Safety, Applications. Washington:Hemisphere Publishing, 1980
    [20] WANG H S, ROSE J W. Film condensation in horizontal microchannels:effect of channel shape[J]. Int. J. Therm. Sci., 2006, 45:1205-1212
  • 加载中
计量
  • 文章访问数:  1474
  • HTML全文浏览量:  108
  • PDF下载量:  3086
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2017-08-22
  • 修回日期:  2018-01-24
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回