留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetospheric Physics in China

CAO Jinbin YANG Junying

CAO Jinbin, YANG Junying. Magnetospheric Physics in China[J]. 空间科学学报, 2018, 38(5): 694-762. doi: 10.11728/cjss2018.05.694
引用本文: CAO Jinbin, YANG Junying. Magnetospheric Physics in China[J]. 空间科学学报, 2018, 38(5): 694-762. doi: 10.11728/cjss2018.05.694
CAO Jinbin, YANG Junying. Magnetospheric Physics in China[J]. Chinese Journal of Space Science, 2018, 38(5): 694-762. doi: 10.11728/cjss2018.05.694
Citation: CAO Jinbin, YANG Junying. Magnetospheric Physics in China[J]. Chinese Journal of Space Science, 2018, 38(5): 694-762. doi: 10.11728/cjss2018.05.694

Magnetospheric Physics in China

doi: 10.11728/cjss2018.05.694
详细信息
    作者简介:

    CAO Jinbin,jbcao@buaa.edu.cn

Magnetospheric Physics in China

More Information
    Author Bio:

    CAO Jinbin,jbcao@buaa.edu.cn

  • 摘要: In the past two years, much progress has been made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS, RBSP, Swarm, MMS, ARTEMIS, MESSENGER missions etc., or by computer simulations. This paper briefly reviews these works based on papers selected from the 227 publications from January 2016 to December 2017. The subjects cover most sub-branches of magnetospheric physics, including geomagnetic storm, magnetospheric substorm, magnetic reconnection, solar wind-magnetosphereionosphere interaction, radiation belt, plasmasphere, outer magnetosphere, magnetotail, geomagnetic field, auroras, and currents.

     

  • [1] ZHANG J J, WANG C, SUN T R, et al. Risk assessment of the extreme interplanetary shock of 23 July 2012 on low-latitude power networks[J]. Space Weather Int. J. Res. Appl., 2016, 14(3):259-270
    [2] HE F, ZHANG X X, WANG W B, et al. Different evolution patterns of subauroral polarization streams (SAPS) during intense storms and quiet time substorms[J]. Geophys. Res. Lett., 2017, 44(21):10796-10804
    [3] JIN W, ZHANG X X, SONG Y, et al. Progress of research on the effect of geomagnetic activity on climatic elements[J]. Chin. J. Geophys.:2017, 60(4):1276-1283
    [4] HU R P, YAN W N, MA S Y, et al. ENA-H and ENA-O separation and their distribution features during the main phase of a great magnetic storm-TWINS satellite observation[J]. Chin. J. Geophys.:2017, 60(11):4364-4376
    [5] SHEN X C, HUDSON M K, JAYNES A N, et al. Statistical study of the storm time radiation belt evolution during van allen probes era:CME-versus CIR-driven storms[J]. J. Geophys. Res.:Space Phys., 2017, 122(8):8327-8339
    [6] LIU W L, TU W C, LI X L, et al. On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS[J]. Geophys. Res. Lett., 2016, 43(3):1023-1030
    [7] OUYANG X Y, LIU W L, XIAO Z, et al. Observations of ULF waves on the ground and ionospheric doppler shifts during storm sudden commencement[J]. J. Geophys. Res.:Space Phys., 2016, 121(4):2976-2983
    [8] YANG J, MA Y D, DUAN A Y, et al. Multi-satellite observations of energy transport during an intense geomagnetic storm[J]. Astrophys. Space Sci., 2016, 361(5). DOI: 10.1007/s10509-016-2745-9
    [9] YANG Y Y, SHEN C, DUNLOP M, et al. Storm time current distribution in the inner equatorial magnetosphere:THEMIS observations[J]. J. Geophys. Res.:Space Phys., 2016, 121(6):5250-5259
    [10] LU J Y, PENG Y X, WANG M, et al. Support vector machine combined with distance correlation learning for Dst forecasting during intense geomagnetic storms[J]. Planet. Space Sci., 2016, 120:48-55
    [11] SUN W J, FU S Y, WEI Y, et al. Plasma sheet pressure variations in the near-earth magnetotail during substorm growth phase:THEMIS observations[J]. J. Geophys. Res.:Space Phys., 2017, 122(12):12212-12228
    [12] WANG C, MA Q, TAO X, et al. Modeling radiation belt dynamics using a 3-D layer method code[J]. J. Geophys. Res.:Space Phys., 2017, 122(8):8642-8658
    [13] WU M Y, LU Q M, VOLWERK M, et al. Current sheet flapping motions in the tailward flow of magnetic reconnection[J]. J. Geophys. Res.:Space Phys., 2016, 121(8):7817-7827
    [14] WANG H, ZHANG K D, WAN X, et al. Universal time variation of high-latitude thermospheric disturbance wind in response to a substorm[J]. J. Geophys. Res.:Space Phys., 2017, 122(4):4638-4653
    [15] WANG G Q, ZHANG T L, VOLWERK M, et al. Mirror mode structures ahead of dipolarization front near the neutral sheet observed by Cluster[J]. Geophys. Res. Lett., 2016, 43(17):8853-8858
    [16] ZHAO H Y, SHEN X C, TANG B B, et al. Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease[J]. J. Geophys. Res.:Space Phys., 2016, 121(2):1071-1077
    [17] ZHANG L Q, BAUMJOHANN W, WANG C, et al. Bursty bulk flows at different magnetospheric activity levels:dependence on IMF conditions[J]. J. Geophys. Res.:Space Phys., 2016, 121(9):8773-8789
    [18] HE Z H, DAI L, WANG C, et al. Contributions of substorm injections to SYM-H depressions in the main phase of storms[J]. J. Geophys. Res.:Space Phys., 2016, 121(12):11729-11736
    [19] DUAN S P, DAI L, WANG C, et al. Oxygen Ions O+ energized by kinetic alfven eigenmode during dipolarizations of intense substorms[J]. J. Geophys. Res.:Space Phys., 2017, 122(11):11256-11273
    [20] CHENG Z W, ZHANG J C, SHI J K, et al. The particle carriers of field-aligned currents in the Earth's magnetotail during a substorm[J]. J. Geophys. Res.:Space Phys., 2016, 121(4):3058-3068
    [21] YAO Z H, RAE I J, LUI A T Y, et al. An explanation of auroral intensification during the substorm expansion phase[J]. J. Geophys. Res.:Space Phys., 2017, 122(8):8560-8576
    [22] ZONG Q G, HAO Y X, ZOU H, et al. Radial propagation of magnetospheric substorm-injected energetic electrons observed using a BD-IES instrument and Van Allen Probes[J]. Sci. China:Earth Sci., 2016, 59(7):1508-1516
    [23] WANG R S, LU Q M, NAKAMURA R, et al. Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection[J]. Nature Phys., 2016, 12(3):263-267
    [24] CAO D, FU H S, CAO J B, et al. MMS observations of whistler waves in electron diffusion region[J]. Geophys. Res. Lett., 2017, 44(9):3954-3962
    [25] ZHANG Y C, LAVRAUD B, DAI L, et al. Quantitative analysis of a Hall system in the exhaust of asymmetric magnetic reconnection[J]. J. Geophys. Res.:Space Phys., 2017, 122(5):5277-5289
    [26] YAN G Q, MOZER F S, PHAN T, et al. Quasicontinuous reconnection accompanied by FTEs during IMF Bz approximate to 0 nT observed by Double Star TC-1 at the dawnside magnetopause[J]. Adv. Space Res., 2016, 58(2):208-217
    [27] ZHANG Y C. Distinct characteristics of asymmetric magnetic reconnections:observational results from the exhaust region at the dayside magnetopause[J]. Sci. Rep., 2016, 6:27592
    [28] HUANG S Y, FU H S, YUAN Z G, et al. Two types of whistler waves in the hall reconnection region[J]. J. Geophys. Res.:Space Phys., 2016, 121(7):6639-6646
    [29] HUANG S Y, YUAN Z G, SAHRAOUI F, et al. Occurrence rate of whistler waves in the magnetotail reconnection region[J]. J. Geophys. Res.:Space Phys., 2017, 122(7):7188-7196
    [30] HUANG S Y, RETINO A, PHAN T D, et al. In situ observations of flux rope at the separatrix region of magnetic reconnection[J]. J. Geophys. Res.:Space Phys., 2016, 121(1):205-213
    [31] ZHOU M, LI T M, DENG X H, et al. Statistics of energetic electrons in the magnetotail reconnection[J]. J. Geophys. Res.:Space Phys., 2016, 121(4):3108-3119
    [32] WANG R S, LU Q M, NAKAMURA R, et al. Electrostatic and electromagnetic fluctuations detected inside magnetic flux ropes during magnetic reconnection[J]. J. Geophys. Res.:Space Phys., 2016, 121(10):9473-9482
    [33] WANG R S, NAKAMURA R, LU Q M, et al. ElectronScale quadrants of the hall magnetic field observed by the magnetospheric multiscale spacecraft during asymmetric reconnection[J]. Phys. Rev. Lett., 2017, 118(17). DOI: https://doi.org/10.1103/PhysRevLett.118.175101
    [34] WANG R S, LU Q M, NAKAMURA R, et al. Interaction of magnetic flux ropes via magnetic reconnection observed at the magnetopause[J]. J. Geophys. Res.:Space Phys., 2017, 122(10):10436-10447
    [35] WANG H Y, LU Q M, HUANG C, et al. Electron acceleration in a secondary magnetic island formed during magnetic reconnection with a guide field[J]. Phys. Plasmas, 2017, 24(5):509
    [36] LI L J, MA Z W, WANG L C. Generation of Alfven wave energy during magnetic reconnection in Hall MHD[J]. Plasma Scie. Technol., 2017, 19(10):5-13
    [37] LI L J, TIAN L P, MA Z W. Formation of Alfvenic resonance layers in magnetic reconnection[J]. J. Geophys. Res.:Space Phys., 2016, 121(4):3170-3180
    [38] WU L N, MA Z W, ZHANG H W. Shock formation and structure in magnetic reconnection with a streaming flow[J]. Sci. Rep., 2017, 7. DOI: 10.1038/s41598-017-08836-8
    [39] LU X Q, MA Z W, GUO W. Behavior of fast earthward flow near the braking region:hall MHD simulation[J]. Epl, 2016, 116(2):29001
    [40] DAI L, WANG C, ZHANG Y C, et al. Kinetic Alfven wave explanation of the Hall fields in magnetic reconnection[J]. Geophys. Res. Lett., 2017, 44(2):634-640
    [41] WANG W S, LIU R, WANG Y M, et al. Buildup of a highly twisted magnetic flux rope during a solar eruption[J]. Nature Commun., 2017, 8. DOI: 10.1038/s41467-017-01207-x
    [42] DONG X C, DUNLOP M W, TRATTNER K J, et al. Structure and evolution of flux transfer events near dayside magnetic reconnection dissipation region:MMS observations[J]. Geophys. Res. Lett., 2017, 44(12):5951-5959
    [43] FU H S, CAO J B, VAIVADS A, et al. Identifying magnetic reconnection events using the FOTE method[J]. J. Geophys. Res.:Space Phys., 2016, 121(2):1263-1272
    [44] FU H S, VAIVADS A, KHOTYAINTSEV Y V, et al. Intermittent energy dissipation by turbulent reconnection[J]. Geophys. Res. Lett., 2017, 44(1):37-43
    [45] FUJIMOTO K. Bursty emission of whistler waves in association with plasmoid collision[J]. Ann. Geophys., 2017, 35(4):885-892
    [46] FUJIMOTO K, SYDORA R D. Linear theory of the current sheet shear instability[J]. J. Geophys. Res.:Space Phys., 2017, 122(5):5418-5430
    [47] GUO R L, PU Z Y, CHEN L J, et al. In-situ observations of flux ropes formed in association with a pair of spiral nulls in magnetotail plasmas[J]. Phys. Plasmas, 2016,23(5), doi: 10.1063/1.4948415
    [48] GUO R L, PU Z Y, FU S Y, et al. Evolution of clustered magnetic nulls in a turbulent-like reconnection region in the magnetotail[J]. Sci. Bull., 2016, 61(14):1145-1150
    [49] LIU C M, FU H S, CAO J B, et al. Rapid pitch angle evolution of suprathermal electrons behind dipolarization fronts[J]. Geophys. Res. Lett., 2017, 44(20):10116-10124
    [50] LIU C M, FU H S, XU Y, et al. Explaining the rolling-pin distribution of suprathermal electrons behind dipolarization fronts[J]. Geophys. Res. Lett., 2017, 44(13):6492-6499
    [51] LIU C M, FU H S, XU Y, et al. Suprathermal electron acceleration in the near-Earth flow rebounce region[J]. J. Geophys. Res.:Space Phys., 2017, 122(1):594-604
    [52] LU S, ANGELOPOULOS V, FU H S. Suprathermal particle energization in dipolarization fronts:particle-in-cell simulations[J]. J. Geophys. Res.:Space Phys., 2016, 121(10):9483-9500
    [53] PENG F Z, FU H S, CAO J B, et al. Quadrupolar pattern of the asymmetric guide-field reconnection[J]. J. Geophys. Res.:Space Phys., 2017, 122(6):6349-6356
    [54] WANG J, CAO J B, FU H S, et al. Enhancement of oxygen in the magnetic island associated with dipolarization fronts[J]. J. Geophys. Res.:Space Phys., 2017, 122(1):185-193
    [55] YANG J, CAO J B, FU H S, et al. Broadband highfrequency waves detected at dipolarization fronts[J]. J. Geophys. Res.:Space Phys., 2017, 122(4):4299-4307
    [56] YAO Z H, RAE I J, GUO R L, et al. A direct examination of the dynamics of dipolarization fronts using MMS[J]. J. Geophys. Res.:Space Phys., 2017, 122(4):4335-4347
    [57] ZHOU M, ASHOUR-ABDALLA M, DENG X H, et al. Observation of Three-Dimensional magnetic reconnection in the terrestrial magnetotail[J]. J. Geophys. Res.:Space Phys., 2017, 122(9):9513-9520
    [58] LI J Z, ZHOU X Z, ANGELOPOULOS V, et al. Contribution of ion reflection to the energy budgets of dipolarization fronts[J]. Geophys. Res. Lett., 2016, 43(2):493-500
    [59] LI J Z, ZHOU X Z, RUNOV A, et al. Characteristics of high-latitude precursor flows ahead of dipolarization fronts[J]. J. Geophys. Res.:Space Phys., 2017, 122(5):5307-5320
    [60] SUN W J, FU S Y, SLAVIN J A, et al. Spatial distribution of Mercury's flux ropes and reconnection fronts:MESSENGER observations[J]. J. Geophys. Res.:Space Phys., 2016, 121(8):7590-7607
    [61] ZHAO S Q, TIAN A M, SHI Q Q, et al. Statistical study of magnetotail flux ropes near the lunar orbit[J]. Sci. China:Technol. Sci., 2016, 59(10):1591-1596
    [62] LIU J, SHI Q Q, TIAN A M, et al. Shape and position of Earth's bow shock near-lunar orbit based on ARTEMIS data[J]. Sci. China:Earth Sci., 2016, 59(8):1700-1706
    [63] CHU W, QIN G. The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions[J]. Ann. Geophys., 2016, 34(1):45-53
    [64] GOU X C, SHI Q Q, TIAN A M, et al. Solar wind plasma entry observed by cluster in the high-latitude magnetospheric lobes[J]. J. Geophys. Res.:Space Phys., 2016, 121(5):4135-4144
    [65] TIAN A M, SHEN X C, SHI Q Q, et al. Dayside magnetospheric and ionospheric responses to solar wind pressure increase:multispacecraft and ground observations[J]. J. Geophys. Res.:Space Phys., 2016, 121(11):10813-10830
    [66] GAO Z L, SU Z P, CHEN L J, et al. Van Allen Probes observations of whistler-mode chorus with long-lived oscillating tones[J]. Geophys. Res. Lett., 2017, 44(12):5909-5919
    [67] WANG M, LU J Y, KABIN K, et al. The influence of IMF clock angle on the cross section of the tail bow shock[J]. J. Geophys. Res.:Space Phys., 2016, 121(11):11077-11085
    [68] HE F, ZHANG X X, WANG W B, et al. Double-peak subauroral ion drifts (DSAIDs)[J]. Geophys. Res. Lett., 2016, 43(11):5554-5562
    [69] HUANG C, HUANG F X, ZHANG X X, et al. The contribution of geomagnetic activity to polar ozone changes in the upper atmosphere[J]. Adv. Meteor., 2017, 28:1-7
    [70] ZONG W G, DAI Y. Mode conversion of a solar extremeultraviolet wave over a coronal cavity[J]. Astrophys. J. Lett., 2017, 834(2). DOI: 10.3847/2041-8213/834/2/L15
    [71] YANG S H, ZHANG J, ZHU X S, et al. Blockinduced complex structures building the flare-productive solar active region 12673[J]. Astrophys. J. Lett., 2017, 849(2):L18
    [72] GAO X L, KE Y G, LU Q M, et al. Generation of multiband chorus in the earth's magnetosphere:1-D PIC simulation[J]. Geophys.l Res. Lett., 2017, 44(2):618-624
    [73] HAO Y F, GAO X L, LU Q M, et al. Reformation of rippled quasi-parallel shocks:2-D hybrid simulations[J]. J. Geophys. Res.:Space Phys., 2017, 122(6):6385-6396
    [74] LI Z Y, CHEN T, YAN G Q. New method for determining central axial orientation of flux rope embedded within current sheet using multipoint measurements[J]. Sci. China:Earth Sci., 2016, 59(10):2037-2052
    [75] ZHANG L Q, DAI L, BAUMJOHANN W, et al. Temporal evolutions of the solar wind conditions at 1 AU prior to the near-Earth X lines in the tail:superposed epoch analysis[J].ıJ. Geophys. Res.:Space Phys., 2016, 121(8):7488-7496
    [76] SHEN X C, SHI Q Q, ZONG Q G, et al. Daysidemagnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse[J]. J. Geophys. Res.:Space Phys., 2017, 122(2):1658-1669
    [77] ZHAO L L, ZHANG H, ZONG Q G. A statistical study on hot flow anomaly current sheets[J]. J. Geophys. Res.:Space Phys., 2017, 122(1):235-248
    [78] MA X, LU J Y, WANG M. Pressure balance across the magnetopause during the solar wind event on 5 June 1998[J]. Planet. Space Sci., 2017, 139:11-17
    [79] FU Q, TANG Y, ZHAO J S, et al. Low-Frequency waves in cold Three-Component plasmas[J]. Plasma Sci. Technol., 2016, 18(9):897-901
    [80] CHEN X R, ZONG Q G, ZHOU X Z, et al. Van Allen Probes observation of a 360 degrees phase shift in the flux modulation of injected electrons by ULF waves[J]. Geophys. Res. Lett., 2017, 44(4):1614-1624
    [81] XIAO F L, ZHOU Q H, SU Z P, et al. Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts[J]. Geophys. Res. Lett., 2016, 43(23):11971-11978
    [82] ZHOU Q H, XIAO F L, YANG C, et al. Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes[J]. J. Geophys. Res.:Space Phys., 2016,121(5):4518-4529
    [83] YANG Q W, YANG C, HE Y H, et al. Magnetospheric chorus wave instability induced by relativistic Kappatype distributions[J]. Sci. China:Technol. Sci., 2016, 59(11):1739-1745
    [84] YANG C, SU Z P, XIAO F L, et al. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus[J]. Geophys. Res. Lett., 2016, 43(16):8339-8347
    [85] GAO Z L, SU Z P, ZHU H, et al. Intense low-frequency chorus waves observed by Van Allen Probes:fine structures and potential effect on radiation belt electrons[J]. Geophys. Res. Lett., 2016, 43(3):967-977
    [86] XIAO F L, LIU S, TAO X, et al. Generation of extremely low frequency chorus in Van Allen radiation belts[J]. J. Geophys. Res.:Space Phys., 2017, 122(3):3201-3211
    [87] ZHOU Q H, XIAO F L, YANG C, et al. Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts[J]. Geophys. Res. Lett., 2017, 44(11):5251-5258
    [88] YANG C, SU Z P, XIAO F L, et al. A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region[J]. Geophys. Res. Lett., 2017, 44(9):3980-3990
    [89] TAO X, CHEN L, LIU X, et al. Quasilinear analysis of saturation properties of broadband whistler mode waves[J]. Geophys. Res. Lett., 2017, 44(16):8122-8129
    [90] KE Y G, GAO X L, LU Q M, et al. Generation of risingtone chorus in a two-dimensional mirror field by using the general curvilinear PIC code[J]. J. Geophys. Res.:Space Phys., 2017, 122(8):8154-8165
    [91] GAO X L, LU Q M, WANG S. First report of resonant interactions between whistler mode waves in the Earth's magnetosphere[J]. Geophys. Res. Lett., 2017, 44(11):5269-5275
    [92] SUN J C, GAO X L, LU Q M, et al. Spectral properties and associated plasma energization by magnetosonic waves in the Earth's magnetosphere:particle-in-cell simulations[J]. J. Geophys. Res.:Space Phys., 2017, 122(5):5377-5390
    [93] KE Y G, GAO X L, LU Q M, et al. Parametric decay of a parallel propagating monochromatic whistler wave:Particle-in-cell simulations[J]. Phys. Plasmas, 2017, 24(1). DOI: 10.1063/1.4974160
    [94] TENG S, TAO X, XIE Y, et al. Analysis of the duration of rising tone chorus elements[J]. Geophys. Res. Lett., 2017, 44(24):12074-12082
    [95] TAO X, ZONCA F, CHEN L. Investigations of the electron phase space dynamics in triggered whistler wave emissions using low noise delta f method[J]. Plasma Phys. Controlled Fusion, 2017, 59(9). DOI: org/10.1088/1361-6587/aa759a
    [96] TAO X, ZONCA F, CHEN L. Identify the nonlinear waveparticle interaction regime in rising tone chorus generation[J]. Geophys. Res. Lett., 2017, 44(8):3441-3446
    [97] GAO X L, MOURENAS D, LI W, et al. Observational evidence of generation mechanisms for very oblique lower band chorus using THEMIS waveform data[J]. J. Geophys. Res.:Space Phys., 2016, 121(7):6732-6748
    [98] GAO X L, LU Q M, BORTNIK J, et al. Generation of multiband chorus by lower band cascade in the Earth's magnetosphere[J]. Geophys. Res. Lett., 2016, 43(6):2343-2350
    [99] SUN J C, GAO X L, CHEN L, et al. A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. I. Linear theory[J]. Phys. Plasmas, 2016, 23(2). DOI: org/10.1063/1.4941284
    [100] SUN J C, GAO X L, LU Q M, et al. A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. Ⅱ. Particle-in-cell simulations[J]. Phys. Plasmas, 2016, 23(2). DOI: org/10.1063/1.4941283
    [101] TAO X, LI X, Theoretical bounce resonance diffusion coefficient for waves generated near the equatorial plane[J]. Geophys. Res. Lett., 2016, 43(14):7389-7397
    [102] TAO X, ZHANG L, WANG C, et al. An efficient and positivity-preserving layer method for modeling radiation belt diffusion processes[J]. J. Geophys. Res.:Space Phys., 2016, 121(1):305-320
    [103] WANG Z Q, ZHAI H, GAO Z X. The effects of hydrogen band emic waves on ring current H+ Ions[J]. Geophys. Res. Lett., 2017, 44(23):11722-11728
    [104] WANG Z Q, PAN Z R, ZHAI H, et al. The nonlinear interactions between O+ ions and oxygen band EMIC waves[J]. J. Geophys. Res.:Space Phys., 2017, 122(7):7097-7109
    [105] YUAN Z G, YU X D, HUANG S Y, et al. In situ observations of magnetosonic waves modulated by background plasma density[J]. Geophys. Res. Lett., 2017, 44(15):7628-7633
    [106] YU X D, YUAN Z G, HUANG S Y, et al. EMIC waves covering wide L shells:MMS and Van Allen Probes observations[J]. J. Geophys. Res.:Space Phys., 2017, 122(7):7387-7395
    [107] WANG X Y, HUANG S Y, ALLEN R C, et al. The occurrence and wave properties of EMIC waves observed by the Magnetospheric Multiscale (MMS) mission[J]. J. Geophys. Res.:Space Phys., 2017, 122(8):8228-8240
    [108] YU X D, YUAN Z G, WANG D D, et al. Oxygen cyclotron harmonic waves observed using Van Allen Probes[J]. Sci. China:Earth Sci., 2017, 60(7):1310-1316
    [109] YU X D, YUAN Z G, WANG D D, et al. Excitation of oblique O+ band EMIC waves in the inner magnetosphere driven by hot H+ with ring velocity distributions[J]. J. Geophys. Res.:Space Phys., 2016, 121(11):11101-11112
    [110] LI H M, YUAN Z G, WANG D D, et al. Statistical characteristics of potentially chorus-driven energetic electron precipitation from POES observations[J]. J. Geophys. Res.:Space Phys., 2016, 121(10):9531-9546
    [111] YUAN Z G, YU X D, WANG D, et al. In situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions[J]. J. Geophys. Res.:Space Phys., 2016, 121(7):6711-6717
    [112] WANG D D, YUAN Z G, YU X D, et al. Geomagnetic storms and EMIC waves:Van Allen Probe observations[J]. J. Geophys. Res.:Space Phys., 2016, 121(7):6444-6457
    [113] XIONG Y, YUAN Z G, WANG J F. Energetic ions scattered into the loss cone with observations of the cluster satellite[J]. Ann. Geophys., 2016, 34(2):249-257
    [114] ZHANG Y C, SHEN C, MARCHAUDON A, et al. First in situ evidence of electron pitch angle scattering due to magnetic field line curvature in the Ion diffusion region[J]. J. Geophys. Res.:Space Phys., 2016, 121(5):4103-4110
  • 加载中
计量
  • 文章访问数:  919
  • HTML全文浏览量:  90
  • PDF下载量:  516
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-04
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回