留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力环境中哺乳动物细胞分子生物学效应研究进展

于洋 王盛炜 许召贤 金明杰 杨树林

于洋, 王盛炜, 许召贤, 金明杰, 杨树林. 微重力环境中哺乳动物细胞分子生物学效应研究进展[J]. 空间科学学报, 2018, 38(6): 891-899. doi: 10.11728/cjss2018.06.891
引用本文: 于洋, 王盛炜, 许召贤, 金明杰, 杨树林. 微重力环境中哺乳动物细胞分子生物学效应研究进展[J]. 空间科学学报, 2018, 38(6): 891-899. doi: 10.11728/cjss2018.06.891
YU Yang, WANG Shengwei, XU Zhaoxian, JIN Mingjie, YANG Shulin. Advances on Molecular and Biological Effects of Mammalian Cells in Microgravity Environment[J]. Chinese Journal of Space Science, 2018, 38(6): 891-899. doi: 10.11728/cjss2018.06.891
Citation: YU Yang, WANG Shengwei, XU Zhaoxian, JIN Mingjie, YANG Shulin. Advances on Molecular and Biological Effects of Mammalian Cells in Microgravity Environment[J]. Chinese Journal of Space Science, 2018, 38(6): 891-899. doi: 10.11728/cjss2018.06.891

微重力环境中哺乳动物细胞分子生物学效应研究进展

doi: 10.11728/cjss2018.06.891 cstr: 32142.14.cjss2018.06.891
基金项目: 

国家重大科学仪器设备开发专项项目资助(2012YQ0401400803)

详细信息
    作者简介:
    • 金明杰,E-mail:jinmingjie@njust.edu.cn;杨树林,E-mail:yshulin@njust.edu.cn
  • 中图分类号: V527

Advances on Molecular and Biological Effects of Mammalian Cells in Microgravity Environment

  • 摘要: 随着载人航天事业的不断发展,空间失重环境引起的航天员健康问题(心血管疾病、免疫抑制、肌肉萎缩、骨质疏松等)日益突出,这已成为人类探索空间的一大阻碍.越来越多的研究关注到微重力条件下机体及细胞的变化.近期的研究表明,在细胞水平上,微重力会引起细胞降解,改变细胞骨架,并造成细胞在分子水平(如细胞增殖、分化、迁移、粘附、信号转导等过程)的一系列改变.本文对微重力条件下免疫细胞、内皮细胞、骨细胞、癌细胞的相关研究进行了归纳总结,研究结果可为微重力条件下机体及相关细胞的研究提供指导,为治疗或缓解微重力条件造成的疾病提供方法和思路.

     

  • [1] BLABER E, MARÇAL H, BURNS B P. Bioastronautics: the influence of microgravity on astronaut health[J]. Astrobiology, 2010, 10(5):463-473
    [2] KONSTANTINOVA I, ANTROPOVA Y N, LEGENKOV V, et al. Study of reactivity of blood lymphoid cells in crew members of the Soyuz-6, Soyuz-7 and Soyuz-8 spaceships before and after flight(blatogenesis delay of lymphocytes)[J]. Space Biol. Med., 1973, 7(6):48-55
    [3] COGOLI A, TSCHOPP A, FUCHSBISLIN P. Cell sensitivity to gravity[J]. Science, 1984, 225(4658):228-230
    [4] COGOLIGREUTER M, LOVIS P, VADRUCCI S. Signal transduction in T cells: an overview[J]. J. Gravit. Physiol., 2004, 11(2):P53-56
    [5] COGOLI M, BECHLER B, COGOLI A, et al. Lymphocytes on sounding rockets[J]. Adv. Space Res., 1992, 12(1):141-144
    [6] COGOLIGREUTER M, SPANO A, SCIOLA L, et al. Influence of microgravity on mitogen binding, motility and cytoskeleton patterns of T lymphocytes and jurkat cells-experiments on sounding rockets[J]. Jpn. J. Aerospace Environ. Med., 1998, 35(2):27-39
    [7] MINAMI Y, KONO T, MIYAZAKI T, et al. The IL-2receptor complex: its structure, function, and target genes[J]. Annu. Rev. Immunol., 1993, 11(1):245-268
    [8] COGOLI A, BECHLER B, COGOLIGREUTER M, et al. Mitogenic signal transduction in Tlymphocytes in microgravity[J]. J. Leukocyte. Biol., 1993, 53(5):569-575
    [9] PIPPIA P, SCIOLA L, COGOLIGREUTER M, et al. Activation signals of T lymphocytes in microgravity[J]. J. Biotechnol., 1996, 47(2-3):215-222
    [10] WALTHER I, PIPPIA P, MELONI M A, et al. Simulated microgravity inhibits the genetic expression of interleu- kin-2 and its receptor in mitogen-activated T lymphocytes[J]. Febs. Lett., 1998, 436(1):115-118
    [11] BOONYARATANAKORNKIT J B, COGOLI A, LI C F, et al. Key gravity-sensitive signaling pathways drive T cell activation[J]. FASEB J., 2005, 19(12):2020-2022
    [12] GRIDLEY D S, SLATER J M, LUOOWEN X, et al. Spaceflight effects on T lymphocyte distribution, function and gene expression[J]. J. Appl. Physiol., 2009, 106(1):194-202
    [13] COOPER D, PELLIS N R. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C[J]. J. Leukocyte. Biol., 1998, 63(5):550-562
    [14] COGOLI A. The effect of hypogravity and hypergravity on cells of the immune system[J]. J. Leukocyte. Biol., 1993, 54(3):259-268
    [15] MELONI M A, GALLERI G, PIPPIA P, et al. Cytoskeleton changes and impaired motility of monocytes at modelled low gravity[J]. Protoplasma, 2006, 229(2/3/4):243-249
    [16] HUGHESFULFORD M, SUGANO E, SCHOPPER T, et al. Early immune response and regulation of IL-2 receptor subunits[J]. Cell Signal., 2005, 17(9):1111-1124
    [17] INGBER D. How cells (might) sense microgravity[J]. FASEB J., 1999, 13:S3-S15
    [18] LEWIS M L, REYNOLDS J L, CUBANO L A, et al. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat)[J]. FASEB J., 1998, 12(11):1007-1018
    [19] HATTON J P, GAUBERT F, CAZENAVE J P, et al. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells[J]. J. Cell Biochem., 2002, 87(1):39-50
    [20] SCHMITT D A, HATTON J P, EMOND C, et al. The distribution of protein kinase C in human leukocytes is altered in microgravity[J]. FASEB J., 1996, 10(14):1627-1634
    [21] LEWIS M L. The cytoskeleton, apoptosis, and gene expression in T lymphocytes and other mammalian cells exposed to altered gravity[J]. Adv. Space Biol. Med., 2002, 8:77-128
    [22] MACCARRONE M, BATTISTA N, MELONI M, et al. Creating conditions similar to those that occur during exposure of cells to microgravity induces apoptosis in human lymphocytes by 5-lipoxygenase-mediated mitochondrial uncoupling and cytochrome C release[J]. J. Leukocyte. Biol., 2003, 73(4):472-481
    [23] CRUCIAN B, STOWE R, MEHTA S, et al. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle[J]. J. Clin. Immunol., 2013, 33(2):456-465
    [24] CRUCIAN B E, CUBBAGE M L, SAMS C F. Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight[J]. J. Interf. Cytok. Res., 2000, 20(6):547-556
    [25] MILLS P J, MECK J V, WATERS W W, et al. Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration[J]. Psychosom. Med., 2001, 63(6):886-890
    [26] RYKOVA M P, ANTROPOVA E N, LARINA I M, et al. Humoral and cellular immunity in cosmonauts after the ISS missions[J]. Acta Astron., 2008, 63(7-10):697-705
    [27] BURAVKOVA L B, RYKOVA M P, GRIGORIEVA V, et al. Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro[J]. J. Gravit. Physiol., 2004, 11(2):P177-180
    [28] LICATO L L, GRIMM E A. Multiple interleukin-2 signaling pathways differentially regulated by microgravity[J]. Immunopharmacology, 1999, 44(3):273-279
    [29] KAUR I, SIMONS E R, CASTRO V A, et al. Changes in neutrophil functions in astronauts[J]. Brain, Behav. Immun., 2004, 18(5):443-450
    [30] ZHANG Y, SANG C, PAULSEN K, et al. ICAM-1 expression and organization in human endothelial cells is sensitive to gravity[J]. Acta Astron., 2010, 67(9/10):1073-1080
    [31] KAPITONOVA M Y, KUZNETSOV S L, FROEMMING G R A, et al. Effects of space mission factors on the morphology and function of endothelial cells[J]. B Exp. Biol. Med., 2013, 154(6):796-801
    [32] MARIOTTI M, MAIER J A M. Gravitational unloading induces an anti-angiogenic phenotype in human microvascular endothelial cells[J]. J. Cell Biochem., 2008, 104(1):129-135
    [33] GRIMM D, BAUER J, KOSSMEHL P, et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells[J]. FASEB J., 2002, 16(6):604-606
    [34] KANG C Y, ZOU L, YUAN M, et al. Impact of simulated microgravity on microvascular endothelial cell apoptosis[J]. Eur. J. Appl. Physiol., 2011, 111(9):2131-2138
    [35] SHI F, WANG Y C, ZHAO T Z, et al. Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway[J]. Plos One, 2012, 7(7):e40365
    [36] HUANG Y, DAI Z Q, LING S K, et al. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells[J]. J. Biomed. Sci., 2009, 16:87
    [37] SHEYN D, PELLED G, NETANELY D, et al. The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study[J]. Tiss. Eng. Part A, 2010, 16(11):3403-3412
    [38] GRIFFONI C, DI MOLFETTA S, FANTOZZI L, et al. Modification of proteins secreted by endothelial cells during modeled low gravity exposure[J]. J. Cell Biochem., 2011, 112(1):265-272
    [39] VERSARI S, LONGINOTTI G, BARENGHI L, et al. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment[J]. FASEB. J., 2013, 27(11):4466-4475
    [40] SIAMWALA J H, MAJUMDER S, TAMILARASAN K P, et al. Simulated microgravity promotes nitric oxide-supported angiogenesis via the iNOScGMPPKG pathway in macrovascular endothelial cells[J]. Febs. Lett., 2010, 584(15):3415-3423
    [41] LEBLANC A D, SCHNEIDER V S, EVANS H J, et al. Bone mineral loss and recovery after 17 weeks of bed rest[J]. J. Bone. Miner. Res., 1990, 5(8):843-850.
    [42] ALEXANDRE C, VICO L. Pathophysiology of bone loss in disuse osteoporosis[J]. Joint Bone Spine, 2011, 78(6):572-576
    [43] LEBLANC A, SHACKELFORD L, SCHNEIDER V. Future human bone research in space[J]. Bone, 1998, 22(5):113S-116S
    [44] VICO L, COLLET P, GUIGNANDON A, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts[J]. Lancet, 2000, 355(9215):1607-1611
    [45] HUGHESFULFORD M, LEWIS M L. Effects of microgravity on osteoblast growth activation[J]. Exp. Cell Res., 1996, 224(1):103-109
    [46] HUGHESFULFORD M, RODENACKER K, JÜTTING U. Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity[J]. J. Cell Biochem., 2006, 99(2):435-449
    [47] NAKAMURA H, KUMEI Y, MORITA S, et al. Suppression of osteoblastic phenotypes and modulation of pro-and anti-apoptotic features in normal human osteoblastic cellsunder a vector-averaged gravity condition[J]. J. Med. Dent. Sci., 2003, 50(2):167-176
    [48] KUMEI Y, SHIMOKAWA H, KATANO H, et al. Microgravity induces prostaglandin E2 and interleukin-6 production in normal rat osteoblasts: role in bone demineralization[J]. J. Biotechnol., 1996, 47(2-3):313-324
    [49] CAPULLI M, RUFO A, TETI A, et al. Global transcriptome analysis in mouse calvarial osteoblasts highlights sets of genes regulated by modeled microgravity and identifies a "mechanoresponsive osteoblast gene signature"[J]. J. Cell Biochem., 2009, 107(2):240-252
    [50] PATEL M J, LIU W, SYKES M C, et al. Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine[J]. J. Cell Biochem., 2007, 101(3):587-599
    [51] XING W, BAYLINK D, KESAVAN C, et al. Global gene expression analysis in the bones reveals involvement of several novel genes and pathways in mediating an anabolic response of mechanical loading in mice[J]. J. Cell Biochem., 2005, 96(5):1049-1060
    [52] GUO Feima, DAI Zhongquan, WU Feng, et al. Bone-specific transcription factor Runx2 on the role of antagonistic bone loss in space[J]. Chin. J. Space Sci., 2011, 31(5):627-634 (郭飞马, 戴钟铨, 吴峰, 等. 吴峰骨特异性转录因子Runx2对抗空间骨丢失效应的初步研究[J]. 空间科学学报, 2011, 31(5):627-634)
    [53] HUANG Guopin, ZHENG Qiang, YANG Jinfeng, et al. Analysis of effects of simulated microgravity on signaling pathways involved in osteogenic differentiation of human mesenchymal stem cells[J]. Chin. J. Space Sci., 2008, 28(1):87-96 (黄国平, 郑强, 杨金凤, 等. 模拟微重力对人骨髓间充质干细胞向成骨细胞分化中细胞信号通路影响的分析[J]. 空间科学学报, 2008, 28(1):87-96)
    [54] KO Y J, ZAHARIAS R S, SEABOLD D A, et al. Osteoblast differentiation is enhanced in rotary cell culture simulated microgravity environments[J]. J. Prosthodont., 2007, 16(6):431-438
    [55] GRIMM D, KOSSMEHL P, SHAKIBAEI M, et al. Effects of simulated microgravity on thyroid carcinoma cells[J]. J. Gravit. Physiol., 2002, 9(1):253-258
    [56] INFANGER M, KOSSMEHL P, SHAKIBAEI M, et al. Longterm conditions of mimicked weightlessness influences the cytoskeleton in thyroid cells[J]. J. Gravit. Physiol., 2004, 11(2):169-172
    [57] TAGA M, YAMAUCHI K, ODLE J, et al. Melanoma growth and tumorigenicity in models of microgravity[J]. Aviat. Space Envir. Md., 2006, 77(11):1113-1116
    [58] IVANOVA K, EIERMANN P, TSIOCKAS W, et al. Natriuretic peptide-sensitive guanylyl cyclase expression is down-regulated in human melanoma cells at simulated weightlessness[J]. Acta Astron., 2011, 68(7/8):652-655
    [59] KANEKO T, SASAKI S, UMEMOTO Y, et al. Simulated conditions of microgravity increases progesterone production in I-10 cells of leydig tumor cell line[J]. Int. J. Urol., 2008, 15(3):245-250
    [60] XIANG Qing, FANG Qing, CHEN Zhihua, et al. Effects on physiological characteristics of tumor cell lines by space environment[J]. Chin. J. Space Sci., 2004, 24(5):388-393 (向青, 房青, 陈志华, 等. 空间环境对肿瘤细胞生理特性的影响[J]. 空间科学学报, 2004, 24(5):388-393)
    [61] MARRERO B, MESSINA J L, HELLER R. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma[J]. In Vitro Cell. Dev-An., 2009, 45(9):523-534
    [62] BECKER J L, PREWETT T L, SPAULDING G F, et al. Three-dimensional growth and differentiation of ovarian tumor cell line in high aspect rotating-wall vessel: morphologic and embryologic considerations[J]. J. Cell Biochem., 1993, 51(3):283-289
    [63] BECKER J L. Women's health issues and space-based medical technologies[J]. Earth Space Rev., 1994, 3(2):15-19
    [64] CHANG T T, HUGHESFULFORD M. Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes[J]. Tiss. Eng.:A, 2009, 15(3):559-567
    [65] GROSSE J, WEHLAND M, PIETSCH J, et al. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids[J]. FASEB J., 2012, 26(12):5124-5140
  • 加载中
计量
  • 文章访问数:  1258
  • HTML全文浏览量:  125
  • PDF下载量:  457
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2017-09-11
  • 修回日期:  2018-04-21
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回