Effects of Laser and Hot Wire Modes on Ignition and Combustion of Single Multicomponent Droplet
-
摘要: 采用挂滴方法,实验研究多组分单液滴的着火和燃烧特性,考察激光和热丝两种点火方式对液滴燃烧速率、火焰形貌及着火延迟时间的影响.实验结果表明,随着热丝点火时间增加,燃烧速率因液滴周围自然对流增强而加快.常重力下液滴火焰为包覆型火焰,火焰高度与液滴初始直径之比的最大值约为18.当t/tb>0.4时,尚处于热丝加热阶段的火焰高度比没有热丝加热的高约5D0,比激光关闭后的火焰高度高5~10D0.与热丝点火相比,激光点火响应迅速,对液滴附近气体干扰小,是地面上比较理想的点火方式.固定激光脉冲时间,随着激光强度的增加,单液滴的着火延迟时间缩短.Abstract: The ignition and combustion characteristics of multicomponent fuel as single suspended droplet are conducted. The effects of laser and hot wire ignition on droplet burning rate, flame morphology and ignition delay time are analyzed. The experimental results show that, as the hot wire ignition time increases, the burning rate increases with the increase of natural convection around the droplet. Under ambient environment, the droplet flame is a teardrop shaped flame, and the maximum ratio between the flame height and the initial droplet diameter is about 18. When t/tb>0.4, the flame height of the droplet when heated by the hot wire is 5D0 higher than that in subsequent non-heating stage, and 5~10D0 higher than that of the droplet ignited by the laser. Compared with the hot wire ignition, the laser ignition responses faster and causes less interference to the flow field near the droplet. Therefore, the laser ignition is an ideal method of the droplet combustion experiments on the ground. With a fixed laser pulse time, the ignition delay time of single droplet becomes shorter when the laser intensity increases.
-
[1] HU Peng. Research on Spray and Combustion Process Based on Single Droplet Evaporation Model and Turbulent Diffusion Combustion Model of Ethanol-Diesel[D]. Zhenjiang: Jiangsu University, 2014 (胡鹏. 基于乙醇柴油单液滴蒸发和湍流扩散模型的喷雾和燃烧过程研究[D]. 镇江: 江苏大学, 2014) [2] GODSAVE G A E. Studies of the combustion of drops in a fuel spray——The burning of single drops of fuel[J]. Symp. Int. Comb., 1953, 4(1):818-830 [3] MARCHESE A J, DRYER F L, COLANTONIO R O, et al. Microgravity combustion of methanol and methanol/water droplets: Drop tower experiments and model predictions[J]. Symp. Int. Combust., 1996, 26(1): 1209-1217 [4] LIU Yucheng, AVEDISIAN C T. A comparison of the spherical flame characteristics of sub-millimeter droplets of binary mixtures of n-heptane/iso-octane and n-heptane/toluene with a commercial unleaded gasoline[J]. Combust. Flame, 2012, 159(2):770-783 [5] NAYAGAM V, HAGGARD J B, COLANTONIO R O, et al. Microgravity n-heptane droplet combustion in oxygen-helium mixtures at atmospheric pressure[J]. AIAA J., 1998, 36(8):1369-1378 [6] CALCOTE H F, PEASE R N. Electrical properties of flames: Burner flames in longitudinal electric fields[J]. Ind. Eng. Chem., 1951, 43(12):2726-2731 [7] PAPAC M J, DUNN-RANKIN D, STIPE C B, et al. N2 CARS thermometry and O2 LIF concentration measurements in a flame under electrically induced microbuoyancy[J]. Combust. Flame, 2003, 133(3):241-254 [8] STRAYER B A, POSNER J D, DUNN-RANKIN D, et al. Simulating microgravity in small diffusion flames by using electric fields to counterbalance natural convection[J]. Proc. Royal Soc.: A Math. Phys. Eng. Sci., 2002, 458 (2021):1151-1166 [9] FAETH G M, DOMINICIS D P, TULPINSKY J F, et al. Supercritical bipropellant droplet combustion[J]. Symp. Int. Combust., 1969, 12(1):9-18 [10] MIKAMI M, OYAGI H, KOJIMA N, et al. Microgravity experiments on flame spread along fuel-droplet arrays at high temperatures[J]. Combust. Flame, 2006, 146(3): 391-406 [11] DIETRICH D L, FERKUL P V, BRYG V M, et al. Detailed Results from the Flame Extinguishment Experiment (FLEX) March 2009 to December 2011[R]. Cleveland, OH,US: NASA, 2015 [12] HAO Haixia, PEI Qing, ZHAO Fengqi, et al. Summarization of laser ignition characteristics of solid propellants[J]. Chin. J. Energ. Mater.2009, 17(4):491-498 (郝海霞, 裴庆, 赵凤起, 等. 固体推进剂激光点火性能研究综述[J]. 含能材料, 2009, 17(4):491-498) [13] LI Shufen, NIU Helin, ZHANG Gangchui, et al. Laser ignition of NEPE propellant[J]. J. Prop. Technol., 2002, 23(2):172-175 (李疏芬, 牛和林, 张钢锤, 等. NEPE推进剂激光点火特性[J]. 推进技术, 2002, 23(2):172-175) [14] YANG Dali, XIA Zhixun, HU Jianxin, et al. Experimental study on ignition and combustion characteristics of single kerosene gel droplet[J]. Acta Aeron. Astron. Sin., 2016, 37(3):847-853 (杨大力, 夏智勋, 胡建新, 等. 煤油凝胶单液滴燃烧特性试验[J]. 航空学报, 2016, 37(3):847-853) [15] LIU Peng, SONG Chonglin, ZHANG Yanfeng, et al. Effects on the performance and emission characteristics of heavy-duty diesel engine using ethanol-diesel blends as fuel[J]. J. Combust. Sci. Technol., 2003, 9(4):300-305 (刘朋, 宋崇林, 张延峰, 等. 乙醇—柴油混合燃料对柴油机性能及排放的影响[J]. 燃烧科学与技术, 2003, 9(4):300-305) [16] LI Shuangding. The Experimental Study on Ethanol-diesel Engine[D]. Nanning: Guangxi University, 2008 (李双定. 乙醇柴油混合燃料发动机的试验研究[D]. 南宁: 广西大学, 2008) [17] LAW C K. Combustion Physics[M]. Cambridge, UK: Cambridge University Press, 2006:217-221 [18] BOTERO M L, HUANG Y, ZHU D L, et al. Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures[J]. Fuel, 2012, 94:342-347 [19] FANG Chaogang, SONG Qiang, ZHONG Lei, et al. Combustion behavior of N-decane droplet in direct current electric field in normal gravity field[J]. J. Combust. Sci. Technol., 2012, 18(6):486-490 (方朝纲, 宋蔷, 仲蕾, 等. 电场作用下正癸烷液滴在常温常压下的燃烧特性[J]. 燃烧科学与技术, 2012, 18(6):486-490) [20] GONG Jingsong, LU Qizhi, HE Yukun, et al. Evaporation and ignition characteristics of coal liquefied oil[J]. J. Combust. Sci. Technol., 2014, 20(1):10-13 (龚景松, 陆奇志, 何裕昆, 等. 煤液化油的蒸发与着火特性[J]. 燃烧科学与技术, 2014, 20(1):10-13) [21] SHAFIROVICH E, BOCANEGRA P E, CHAUVEAU C, et al. Ignition of single nickel-coated aluminum particles[J]. Proc. Combust. Inst., 2005, 30(2):2055-2062 -
-
计量
- 文章访问数: 1343
- HTML全文浏览量: 142
- PDF下载量: 362
-
被引次数:
0(来源:Crossref)
0(来源:其他)