Integrated Payload OBDH Technology for Deep Space Exploration
-
摘要: 深空探测对探测器有效载荷电子学及数管的轻小型化和自主能力提出了更高要求.将各载荷电子学与传统的载荷数管集成一体化设计,构建新型高度集成的载荷数管体系结构,可以实现资源集约利用,提高信息融合能力,利于实施自主管理.本文介绍了嫦娥系列探测器载荷电子学及数管设计的现状;提出两种新型一体化载荷数管体系结构,其中第一种低成本集成化方案已应用在中国首次火星探测任务中;通过对未来深空探测载荷数管的技术需求进行分析,对载荷数管发展趋势进行了展望.Abstract: Deep space explorations put forward higher requirements on miniaturization and autonomy to probe's payload On-board Data Handling (OBDH) system. The novel highly integrated payload OBDH architecture is constructed by integrating payload electronics units and traditional payload OBDH units. This architecture can realize intensive use of resources, improve information unification and implement onboard autonomy conveniently. Payload OBDH architectures of the Chang'E series probes are introduced. Two novel integrated payload OBDH architectures are proposed, the low-cost scheme has been applied to China's first Mars exploration. Payload OBDH technical requirements for future deep space exploration are analyzed, and payload OBDH development trends are prospected.
-
Key words:
- Deep space exploration /
- Payload OBDH /
- Payload electronics /
- Integration
-
[1] TOMAS DE, JMATEO SANGUINO. 50 years of rovers for planetary exploration: a retrospective review for future directions[J]. Robot. Auton. Syst., 2017, 94:172-185 [2] XIN Hua. China will implement four major deep space missions in the future[J]. Space Exploration, 2017(03):5 (新华. 中国未来将实施四次重大深空探测任务[J]. 太空探索, 2017(3):5) [3] SUN Zezhou, MENG Linzhi. Current situation and sustainable development trend of deep space exploration in China[J]. J. Nanjing Univ. Aeron. Astron., 2015, 47(6):785-91 (孙泽洲, 孟林智. 中国深空探测现状及持续发展趋势[J]. 南京航空航天大学学报, 2015, 47(6):785-91) [4] ZHANG Meng, MENG Linzhi, HUANG Jiangchuan, et al. Design and implementation of Chang'E satellite's high reliable electronic information system based on multilevel control structure[J]. Sci. Sin: Technol., 2013, 43(7):739-747 (张猛, 孟林智, 黄江川, 等. 基于多级控制结构的嫦娥卫星高可靠电子信息体制设计与实现[J]. 中国科学: 技术科学, 2013, 43(7):739-747) [5] CHEN J X, ZHANG Z, WANG L, et al. Design and realization of the integrated electronic system for the Chang'E-3 lunar rover[J]. Sci. Sin. Tech., 2014, 44(5):450-460 (陈建新, 张志, 王磊, 等. 嫦娥三号巡视器综合电子系统的设计与实现[J]. 中国科学: 技术科学, 2014, 44(5):450-460) [6] SUN H X, DAI S W. Mission objectives and payloads for the first lunar exploration of China[J]. Acta Astron., 2005, 57(2-8):561-565 [7] CHEN Xiaomin, SUN Huixian. Payload OBDH system of Chang'E-1 satellite[C]//The 18th. academy meeting of Space exploration professional committee of China space science society. Sanxia: Chinese Society of Space Science, 2005 (陈小敏, 孙辉先. 嫦娥一号卫星有效载荷数据管理系统[C]//中国空间科学学会空间探测专业委员会第十八次学术会议论文集. 三峡: 中国空间科学学会, 2005) [8] WU W R, WANG Q, TANG Y H, et al. Design of Chang'E-4 lunar farside soft-landing mission[J]. J. Deep Space Explor., 2017, 4(2):111-117 (吴伟仁, 王琼, 唐玉华, 等. "嫦娥4号"月球背面软着陆任务设计[J]. 深空探测学报, 2017, 4(2):111-117) [9] DAI Shuwu, WU Ji, SUN Huixian, et al. Chang'E-3 lunar rover's scientific payloads[J]. Chin. J. Space Sci., 2014, 34(3):332-340 (代树武, 吴季, 孙辉先, 等. 嫦娥三号巡视器有效载荷[J]. 空间科学学报, 2014, 34(3):332-340) [10] JIA Yingzhuo, DAI Shuwu, WU Ji, et al. Chang'E-3 Lander's scientific payloads[J]. Chin. J. Space Sci., 2014, 34(2):219-225 (贾瑛卓, 代树武, 吴季, 等. 嫦娥三号着陆器有效载荷[J]. 空间科学学报, 2014, 34(2):219-225) [11] ZHOU Li, AN Junshe, XIE Yan, et al. Design of a 1553B IP core based on ASIC technology[J]. Chin. J. Space Sci., 2014, 34(1):127-136 (周莉, 安军社, 谢彦, 等. 基于ASIC 技术的1553B IP核的设计[J]. 空间科学学报, 2014, 34(1):127-136) [12] ZHOU Li, AN Junshe. Design of a RS485-to-1553B bus bridge[C]//2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Beijing: IEEE Computer Society, 2013:255-258 [13] VLADIMIROVA T, FAYYAZ M, SWEETING M N, et al. A novel autonomous low-cost on-board data handling architecture for a pin-point planetary lander[J]. Acta Astron., 2011, 68(7/8):811-829 [14] IMKEN T, CASTILLO-ROGEZ J, HE Y, et al. CubeSat flight system development for enabling deep space science[C]//2017 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2017:1-14 [15] GR740-UM-DS[OL]. Aeroflex. [2017-01-01]. https://www.gaisler.com/doc/gr740/GR740-UM-DS.pdf [16] YE Hao. Compressed Sensing Based Compression and Reconstruction of Deep Space Image[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2016 (叶浩. 基于压缩感知的深空图像压缩采样与恢复算法研究[D]. 重庆: 重庆邮电大学, 2016) [17] LIU Yunlu. Research on Image Compression Based on Compressed Sensing in the Deep Space[D]. Harbin Institute of Technology, 2015 (刘云路. 基于压缩感知的深空探测图像压缩研究[D]. 哈尔滨工业大学, 2015) [18] CUI P Y, XU R, ZHU S Y, et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeron. Astron. Sin., 2014, 35(1):13-28 (崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1):13-28) [19] CASTANO A, FUKUNAGA A, BIESIADECKI J, et al. Automatic detection of dust devils and clouds on Mars[J]. Mach. Vision Appl., 2008, 19(5/6):467-482 [20] ESTLIN T A, BORNSTEIN B J, GAINES D M, et al. AEGIS automated targeting for MER opportunity rover[J]. Acm Trans. Intell. Syst. Tech., 2012, 3(3):1-16 [21] FRANCIS R, ESTLIN T, GAINES D, et al. AEGIS intelligent targeting deployed for the Curiosity Rover's ChemCam instrument[C]//Lunar and Planetary Science Conference. The Woodlands, Texas, 2016 [22] FRANCIS R, Estlin T, Gaines D, et al. AEGIS autonomous targeting for the Curiosity rover's ChemCam instrument[C]//2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). Washington D C: IEEE, 2016:1-4 [23] GANKIDI P R, THANGAVELAUTHAM J. FPGA architecture for deep learning and its application to planetary robotics[C]//2017 IEEE Aerospace Conference. Big Sky MT: IEEE, 2017:1-9 -
-
计量
- 文章访问数: 1388
- HTML全文浏览量: 208
- PDF下载量: 413
-
被引次数:
0(来源:Crossref)
0(来源:其他)