留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大鼠后肢去负荷体位调节装置设计与实验研究

王敏 王守辉 杨肖 黄云飞 孙联文 樊瑜波

王敏, 王守辉, 杨肖, 黄云飞, 孙联文, 樊瑜波. 大鼠后肢去负荷体位调节装置设计与实验研究[J]. 空间科学学报, 2019, 39(1): 100-104. doi: 10.11728/cjss2019.01.100
引用本文: 王敏, 王守辉, 杨肖, 黄云飞, 孙联文, 樊瑜波. 大鼠后肢去负荷体位调节装置设计与实验研究[J]. 空间科学学报, 2019, 39(1): 100-104. doi: 10.11728/cjss2019.01.100
WANG Min, WANG Shouhui, YANG Xiao, HUANG Yunfei, SUN Lianwen, FAN Yubo. Design and Experimental Validation of Hindlimb Unloading Rat Suspension Device with Adjustable Body Position[J]. Chinese Journal of Space Science, 2019, 39(1): 100-104. doi: 10.11728/cjss2019.01.100
Citation: WANG Min, WANG Shouhui, YANG Xiao, HUANG Yunfei, SUN Lianwen, FAN Yubo. Design and Experimental Validation of Hindlimb Unloading Rat Suspension Device with Adjustable Body Position[J]. Chinese Journal of Space Science, 2019, 39(1): 100-104. doi: 10.11728/cjss2019.01.100

大鼠后肢去负荷体位调节装置设计与实验研究

doi: 10.11728/cjss2019.01.100 cstr: 32142.14.cjss2019.01.100
基金项目: 

国家自然科学基金创新研究群体项目(11421202)和教育部111引智项目(B13003)共同资助

详细信息
    作者简介:
    • 王敏,wangmin1991a@163.com
    通讯作者:
    • 孙联文,sunlw@buaa.edu.cn
  • 中图分类号: R852.22

Design and Experimental Validation of Hindlimb Unloading Rat Suspension Device with Adjustable Body Position

  • 摘要: 通过对大鼠尾吊模型进行改进,研制出一种新型可调节体位的大鼠后肢去负荷悬吊装置,研究模拟微重力效应下体液分布变化对大鼠骨代谢的影响.将36只SD大鼠均分为对照组(CON)、头低位后肢去负荷组(HDT)、水平位后肢去负荷组(HH)和头高位后肢去负荷组(HUT)4组,实验21天后,利用DXA检测大鼠的骨密度(BMD).模拟微重力效应下的三组大鼠后肢均发生严重骨丢失,其中HH和HUT组后肢BMD显著大于HDT组.实验结果表明,体液分布变化可能在模拟微重力效应导致的骨丢失中起到重要作用,新型大鼠后肢去负荷悬吊装置能够调节大鼠体位(体液)进行模拟微重力效应研究.

     

  • [1] RIGGS B L, KHOSLA S, MELTON L J. A unitary model for involutional osteoporosis:estrogen deficiency causes both type I and type Ⅱ osteoporosis in postmenopausal women and contributes to bone loss in aging men[J]. J. Bone Mineral Res., 1998, 13(5):763-773
    [2] CARPENTER R D, LEBLANC A D, EVANS H, et al. Long-term changes in the density and structure of the human hip and spine after long-duration spaceflight[J]. Acta Astron.. 2010, 67(1/2):71-81
    [3] VICO L, LAFAGE-PROUST M H, ALEXANDRE C. Effects of gravitational changes on the bone system in vitro and in vivo[J]. Bone, 1998, 22(5):95S-100S
    [4] SMITH S M, HEER M, SHACKLFORD L C, et al. Bone metabolism and renal stone risk during International Space Station missions[J]. Bone, 2015, 81:712-720
    [5] SIBONGA J D, SPECTOR E R, JOHNSTON S L, et al. Evaluating bone loss in ISS astronauts[J]. Aeros. Med. Human Perform., 2015, 86(12):A38-A44
    [6] OGANOV V S, GRIGOR'EV A I, VORONIN L I,et al. Bone mineral density in cosmonauts after flights lasting 4.5-6 months on the Mir orbital station[J]. Aeros. Environ. Med., 1992, 26(5/6):20-24
    [7] OGANOV V S, RAKHMANOV A S, NOVIKOV V E, et al. The state of human bone tissue during space flight[J]. Acta Astron., 1991, 23:129-133
    [8] ZHU Bin, GUO Hua, HAO Xi juan, et al. Mechanism of weightlessness osteoporosis and preventive and therapeutic effect of traditional Chinese medicine[J]. China J. Orthop. Traum., 2012(7):611-616
    [9] CLÈMENT G. Fundamentals of Space Medicine[M]. Berlin:Springer Netherlands, 2005
    [10] SUN Lianwen, ZHUANG Fengyuan. Researches of microgravity induced osteopenia in cosmonauts[J]. Chin. J. Aeros. Med., 2004(1):54-58
    [11] SIKAVITSAS V I, BANCROFT G N, HOLTORF H L, et al. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces[J]. PNAS, 2003, 100(25):14683-14688
    [12] DENG Hongwen, LIU Yaozhong. Bone Biomechanics[M]. Beijing:Higher Education Press, 2006:61(邓红文,刘耀中. 骨生物学前沿[M]. 北京:高等教育出版社, 2006:61)
    [13] CAO Xinsheng, WU Xingyu, WU Yanhong, et al. Effects of intermittent +45° head-up-tilt on mechanical parameters of femural bone in tail-suspended rats[J]. Space Med. Med. Eng.. 2000, 13(5):328-331
    [14] ZHANG Yingang, YANG Zhi, ZHANG Hong, et al. Negative pressure technology enhances bone regeneration in rabbit skull defects[J]. BMC Muscul. Disord.. 2013, 14:76
    [15] LI Wenting, HUANG Yunfei, SUN Lianwen, et al. Would interstitial fluid flow be responsible for skeletal maintenance in tail-suspended rats[J]. Microg. Sci. Techn., 2017, 29(1/2):107-114
    [16] MOREY-HOLTON E R, GLOBUS R K. Hindlimb unloading rodent model:technical aspects[J]. J. Appl. Physiol., 2002, 92(4):1367-1377
    [17] MOREY-HOLTON E, Globus R K, KAPLANSKY A, et al. The hindlimb unloading rat model:literature overview, technique update and comparison with space flight data[J]. Adv. Space Biol. Med., 2005, 10:7-40
    [18] SUN Lianwen, XIE Tian, FAN Yubo. Application of exercise and effect on musculoskeletal system in tail-suspension rats[J]. Chin. J. Biomed. Eng., 2009(5):766-770
    [19] SUN Lianwen, WANG Shouhui, WANG Min, et al. An adjustment device for the distribution of body fluid in rats under simulated weightlessness:201610603340.2[P]. China, 2016.12.14
    [20] GUO Rui, HU Min, SUN Zhenyu, et al. Effects of simulated weightlessness on rats mandible, lumbar vertebar and femur[J]. Space Med. Med. Eng., 2005, 18(3):165-169
    [21] ZHAO Fan, LI Dijie, ARFAT Yasir, et al. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats[J]. Acta Astron., 2014, 105(1):57-65
    [22] SUN Y, SHUANG F, CHEN D M, et al. Treatment of hydrogen molecule abates oxidative stress and alleviates bone loss induced by modeled microgravity in rats[J]. Osteoporosis Int., 2013, 24(3):969-978
    [23] LEBLANC A, SCHNEIDER V, SHACKELFORD L, et al. Bone mineral and lean tissue loss after long duration space flight[J]. J. Muscul. Neur. Inter., 2000, 1(2):157-160
    [24] COLLERAN P N, WILKERSON M K, BLOOMFIELD S A, et al. Alterations in skeletal perfusion with simulated microgravity:a possible mechanism for bone remodeling[J]. J. Appl. Physiol., 2000, 89(3):1046-1054
  • 加载中
计量
  • 文章访问数:  1091
  • HTML全文浏览量:  88
  • PDF下载量:  383
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2018-01-30
  • 修回日期:  2018-06-22
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回