Design and Experimental Validation of Hindlimb Unloading Rat Suspension Device with Adjustable Body Position
-
摘要: 通过对大鼠尾吊模型进行改进,研制出一种新型可调节体位的大鼠后肢去负荷悬吊装置,研究模拟微重力效应下体液分布变化对大鼠骨代谢的影响.将36只SD大鼠均分为对照组(CON)、头低位后肢去负荷组(HDT)、水平位后肢去负荷组(HH)和头高位后肢去负荷组(HUT)4组,实验21天后,利用DXA检测大鼠的骨密度(BMD).模拟微重力效应下的三组大鼠后肢均发生严重骨丢失,其中HH和HUT组后肢BMD显著大于HDT组.实验结果表明,体液分布变化可能在模拟微重力效应导致的骨丢失中起到重要作用,新型大鼠后肢去负荷悬吊装置能够调节大鼠体位(体液)进行模拟微重力效应研究.Abstract: The rat tail-suspension model was improved in this paper to develop a new type of adjustable body position hindlimb unloading suspension device for rats, which was used to investigate the effect of changes in body fluid distribution under simulated microgravity on bone metabolism in rats. 36 Sprague-Dawley rats were randomly divided into four groups:Control (CON) group, Head-Down-Tilt (HDT) group, Head-Horizontal (HH) group and Head-Up-Tilt (HUT) group. 21 days later, rats were detected for Bone Mineral Density (BMD) with DXA. Severe bone loss occurred in all three groups of rats under the simulated microgravity effect, and the hindlimb BMD of HH and HUT groups significantly increased compared with HDT group. The experimental results show that the changes in body fluid distribution may play an important role on the bone loss caused by simulated microgravity effect, and the new rat hindlimb unloading suspension device can adjust the body position (body fluid) of rats for simulated microgravity effect study.
-
Key words:
- Unloading /
- Simulated microgravity /
- Body fluid distribution /
- Bone mineral density
-
[1] RIGGS B L, KHOSLA S, MELTON L J. A unitary model for involutional osteoporosis:estrogen deficiency causes both type I and type Ⅱ osteoporosis in postmenopausal women and contributes to bone loss in aging men[J]. J. Bone Mineral Res., 1998, 13(5):763-773 [2] CARPENTER R D, LEBLANC A D, EVANS H, et al. Long-term changes in the density and structure of the human hip and spine after long-duration spaceflight[J]. Acta Astron.. 2010, 67(1/2):71-81 [3] VICO L, LAFAGE-PROUST M H, ALEXANDRE C. Effects of gravitational changes on the bone system in vitro and in vivo[J]. Bone, 1998, 22(5):95S-100S [4] SMITH S M, HEER M, SHACKLFORD L C, et al. Bone metabolism and renal stone risk during International Space Station missions[J]. Bone, 2015, 81:712-720 [5] SIBONGA J D, SPECTOR E R, JOHNSTON S L, et al. Evaluating bone loss in ISS astronauts[J]. Aeros. Med. Human Perform., 2015, 86(12):A38-A44 [6] OGANOV V S, GRIGOR'EV A I, VORONIN L I,et al. Bone mineral density in cosmonauts after flights lasting 4.5-6 months on the Mir orbital station[J]. Aeros. Environ. Med., 1992, 26(5/6):20-24 [7] OGANOV V S, RAKHMANOV A S, NOVIKOV V E, et al. The state of human bone tissue during space flight[J]. Acta Astron., 1991, 23:129-133 [8] ZHU Bin, GUO Hua, HAO Xi juan, et al. Mechanism of weightlessness osteoporosis and preventive and therapeutic effect of traditional Chinese medicine[J]. China J. Orthop. Traum., 2012(7):611-616 [9] CLÈMENT G. Fundamentals of Space Medicine[M]. Berlin:Springer Netherlands, 2005 [10] SUN Lianwen, ZHUANG Fengyuan. Researches of microgravity induced osteopenia in cosmonauts[J]. Chin. J. Aeros. Med., 2004(1):54-58 [11] SIKAVITSAS V I, BANCROFT G N, HOLTORF H L, et al. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces[J]. PNAS, 2003, 100(25):14683-14688 [12] DENG Hongwen, LIU Yaozhong. Bone Biomechanics[M]. Beijing:Higher Education Press, 2006:61(邓红文,刘耀中. 骨生物学前沿[M]. 北京:高等教育出版社, 2006:61) [13] CAO Xinsheng, WU Xingyu, WU Yanhong, et al. Effects of intermittent +45° head-up-tilt on mechanical parameters of femural bone in tail-suspended rats[J]. Space Med. Med. Eng.. 2000, 13(5):328-331 [14] ZHANG Yingang, YANG Zhi, ZHANG Hong, et al. Negative pressure technology enhances bone regeneration in rabbit skull defects[J]. BMC Muscul. Disord.. 2013, 14:76 [15] LI Wenting, HUANG Yunfei, SUN Lianwen, et al. Would interstitial fluid flow be responsible for skeletal maintenance in tail-suspended rats[J]. Microg. Sci. Techn., 2017, 29(1/2):107-114 [16] MOREY-HOLTON E R, GLOBUS R K. Hindlimb unloading rodent model:technical aspects[J]. J. Appl. Physiol., 2002, 92(4):1367-1377 [17] MOREY-HOLTON E, Globus R K, KAPLANSKY A, et al. The hindlimb unloading rat model:literature overview, technique update and comparison with space flight data[J]. Adv. Space Biol. Med., 2005, 10:7-40 [18] SUN Lianwen, XIE Tian, FAN Yubo. Application of exercise and effect on musculoskeletal system in tail-suspension rats[J]. Chin. J. Biomed. Eng., 2009(5):766-770 [19] SUN Lianwen, WANG Shouhui, WANG Min, et al. An adjustment device for the distribution of body fluid in rats under simulated weightlessness:201610603340.2[P]. China, 2016.12.14 [20] GUO Rui, HU Min, SUN Zhenyu, et al. Effects of simulated weightlessness on rats mandible, lumbar vertebar and femur[J]. Space Med. Med. Eng., 2005, 18(3):165-169 [21] ZHAO Fan, LI Dijie, ARFAT Yasir, et al. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats[J]. Acta Astron., 2014, 105(1):57-65 [22] SUN Y, SHUANG F, CHEN D M, et al. Treatment of hydrogen molecule abates oxidative stress and alleviates bone loss induced by modeled microgravity in rats[J]. Osteoporosis Int., 2013, 24(3):969-978 [23] LEBLANC A, SCHNEIDER V, SHACKELFORD L, et al. Bone mineral and lean tissue loss after long duration space flight[J]. J. Muscul. Neur. Inter., 2000, 1(2):157-160 [24] COLLERAN P N, WILKERSON M K, BLOOMFIELD S A, et al. Alterations in skeletal perfusion with simulated microgravity:a possible mechanism for bone remodeling[J]. J. Appl. Physiol., 2000, 89(3):1046-1054 -
-
计量
- 文章访问数: 1091
- HTML全文浏览量: 88
- PDF下载量: 383
-
被引次数:
0(来源:Crossref)
0(来源:其他)