留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地形产生的山地波及其传播过程模拟研究

魏家瑞 刘晓 徐寄遥

魏家瑞, 刘晓, 徐寄遥. 地形产生的山地波及其传播过程模拟研究[J]. 空间科学学报, 2019, 39(4): 449-459. doi: 10.11728/cjss2019.04.449
引用本文: 魏家瑞, 刘晓, 徐寄遥. 地形产生的山地波及其传播过程模拟研究[J]. 空间科学学报, 2019, 39(4): 449-459. doi: 10.11728/cjss2019.04.449
WEI Jiarui, LIU Xiao, XU Jiyao. Simulation on the Mountain Wave and Its Propagation Generated by Terrain[J]. Chinese Journal of Space Science, 2019, 39(4): 449-459. doi: 10.11728/cjss2019.04.449
Citation: WEI Jiarui, LIU Xiao, XU Jiyao. Simulation on the Mountain Wave and Its Propagation Generated by Terrain[J]. Chinese Journal of Space Science, 2019, 39(4): 449-459. doi: 10.11728/cjss2019.04.449

地形产生的山地波及其传播过程模拟研究

doi: 10.11728/cjss2019.04.449 cstr: 32142.14.cjss2019.04.449
基金项目: 

国家自然科学基金项目(41874182,41574143)和河南省高校科技创新人才支持计划项目(17HASTIT010)共同资助

详细信息
    作者简介:
    • 刘晓,liuxiao@htu.edu.cn
  • 中图分类号: P353

Simulation on the Mountain Wave and Its Propagation Generated by Terrain

  • 摘要: 气流经过地形产生的山地波是大气重力波研究的重要类别之一.从大气运动的控制方程组出发,建立模拟地形产生的山地波及其传播过程的二维数值模式.利用水平背景风场、地形和垂直速度之间的关系,在模式中引入垂直速度扰动作为地形产生山地波的激发源.通过模拟该激发源引起的扰动即山地波在大气中的传播过程,再现了山地波的产生、传播及充分发展过程.通过分析水平波长、垂直波长、位温扰动、流线,在空间尺度上描述了山地波的产生、传播及充分发展的过程.在气流经过地形产生的山地波的传播过程中,其水平波长λx的范围为2.5~5km,垂直波长λz约为2.5km.这些结果与利用山地波线性理论计算的垂直波长一致,从而验证了本模式能够模拟地形产生的山地波及其传播过程,为深入了解山地波的产生过程及其在中高层大气中的传播机制和效应奠定了基础.

     

  • [1] HINES C O. Internal atmospheric gravity waves at ionospheric height[J]. Can. J. Phys., 1960, 38(7):1424-1427
    [2] HOLTON J R. The influence of gravity wave breaking on the general circulation of the middle atmosphere[J]. J. Atmos. Sci., 1983, 40(10):2497-2507
    [3] SHEPHERD T G. Issues in stratosphere-troposphere coupling[J]. J. Meteorol. Soc. Jpn., 2002, 80(4B):769-792
    [4] FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1):1003. DOI: 10.1029/2001RG000106
    [5] XU Jiyao, SMITH A K, MA R. A numerical study of the effect of gravity-wave propagation on minor species distributions in the mesopause region[J]. J. Geophys. Res., 2003, 108(D3):4119. DOI: 10.1029/2001JD001570
    [6] HECHT J H. Instability layers and airglow imaging[J]. Rev. Geophys., 2004, 42:RG1001. DOI: 10.1029/2003RG000131
    [7] LINDZEN R S. Turbulence and stress owing to gravity wave and tidal breakdown[J]. J. Geophys. Res., 1981, 86(C10):9709-9714
    [8] MCLANDRESS C. On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models[J]. J. Atmos. Sol. Terr. Phys., 1998, 60(14):1357-1383
    [9] LIU Xiao, XU Jiyao. Nonlinear interaction between gravity wave and different mean wind[J]. Prog. Nat. Sci., 2007, 16(11):1436-1441
    [10] ERN M, PREUSSE P, ALEXANDER M J, et al. Absolute values of gravity wave momentum flux derived from satellite data[J]. J. Geophys. Res. Atmos., 2004, 109(D20). DOI: 10.1029/2004JD004752
    [11] ECKERMANN S D, PREUSSE P. Global measurements of stratospheric mountain waves from space[J]. Science, 1999, 286:1534-1537
    [12] TAN K A, ECKERMANN S D. Numerical simulations of mountain waves in the middle atmosphere over the southern Andes[J]. Am. Geophys. Union, 2000. DOI:10. 1029/GM123p0311
    [13] HERTZOG A, BOCCARA G, VINCENT R A, et al. Estimation of gravity wave momentum flux and phase speeds from quasi-lagrangian stratospheric balloon flights. Part Ⅱ:Results from the Vorcore campaign in Antarctica[J]. J. Atmos. Sci., 2008, 65(10):3056-3070
    [14] KUMAR K N, RAMKUMAR T K, KRISHNAIAH M. Analysis of large-amplitude stratospheric mountain wave event observed from the AIRS and MLS sounders over the western Himalayan region[J]. J. Geophys. Res., 2012, 117:1-12
    [15] KAIFER B, KAIFLER N, EHARD B, et al. Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere[J]. Geophys. Res. Lett., 2015, 42:9488-9494
    [16] ECKERMANN S D, BROUTMAN D, TAN K A, et al. Mountain Waves in the Stratosphere[R]//NRL Rev., 2000, NRL/PU/7641-00-411
    [17] MCHUGH J, SHRMAN R. Generation of mountain wave-induced mean flows and turbulence near the tropopause[J]. Q. J. R. Meteorol. Soc., 2013, 139:1632-1642
    [18] NAPPO C J. An Introduction to Atmospheric Gravity Wave[M]. Academic Press, International Geophysics Serise, 2012, 102(1):1-300
    [19] LIU Xiao. Numerical Study of the Gravity Waves Nonlinear Propagation and Its Interactions with Means Winds and Tides[D]. Beijing:Center for Space Science and Applied Research, Chinese Academy of Sciences, 2007
    [20] SHU C W. Total-variation-diminishing time discretions[J]. Soc. Ind. Appl. Math., 1989, 9(6):1073-1084
    [21] LILLY D K, LESTER P E. Waves and turbulence in the stratosphere[J]. J. Atmos. Sci., 1974, 31:800-812
  • 加载中
计量
  • 文章访问数:  2343
  • HTML全文浏览量:  371
  • PDF下载量:  265
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2018-07-26
  • 修回日期:  2019-01-09
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回