Research on Transfer Orbit Based on Electric Propulsion Satellite to Halo Orbit
-
摘要: 利用电推进及轨道力学的特性实现节能优化,将限制性三体问题中的稳定不变流形与小推力轨道优化相结合,研究全电推进卫星从地球停泊轨道飞向日地拉格朗日L2点Halo轨道的低消耗转移轨道.航天器的转移轨道分为逃逸段、拼接段与无动力滑行段.在逃逸段卫星沿速度方向加速脱离地球引力,拼接段采用Radau伪谱法进行优化,使航天器以最短时间到达目标Halo轨道的稳定不变流形上,随后航天器电推进系统关机,沿稳定不变流形无动力滑行至目标轨道.基于雅克比积分常数给出拼接段轨道初始猜测值,以先提高切向方向航天器能量避免了全程优化离散点过多难以求解的问题.仿真结果表明,该方法收敛速度较快,对平动点工程任务的初期轨道特性计算具有实际意义.Abstract: Energy-saving optimization was achieved by using the characteristics of low-thrust electric propulsion and the orbital dynamics. The transfer orbit of the spacecraft from the Earth parking orbit to the Sun-Earth L2 point Halo orbit has been studied by combining the invariant manifold in the restrictive three-body problem with the low thrust trajectory optimization. Firstly, the transfer orbit is divided into burn and coast phases. Tangential acceleration was used to decrease Jacobi integration constant rapidly, and then Radau pseudo spectral method was adopted in the burn phases to optimize the orbit so that the spacecraft could reach the stable invariant manifold of the target orbit. When the spacecraft reached stable invariant manifold, it could coast to target halo orbit. The initial transfer orbit was guessed by Jacobi integration constant. Finally, a simulation example of transfer orbit was given to verify the effectiveness of the method. The results show that it is of guiding significance to practical engineering application.
-
Key words:
- Low-thrust /
- Invariant manifold /
- Halo orbit /
- Pseudo spectral method
-
[1] RICHARDSON D L. Halo orbit formulation for the ISEE-3 mission[J]. J. Guid. Cont. Dyn., 1980, 3(6):543-548 [2] REN Yuan, CUI Pingyuan, LUAN Enjie. Study of low-thrust transfer to halo orbit with invariant manifolds[J]. J. Astron., 2007, 28(5):48-53(任远, 崔平远, 栾恩杰. 基于不变流形的小推力Halo轨道转移方法研究[J]. 宇航学报, 2007, 28(5):48-53) [3] LIU Janzhong. Missions of Sun-Earth lagrange points and design method of transfer trajectory[J]. Missiles Space Vehicle, 2009, 1:7-10(刘建忠. 日elax-elax地系拉格朗日点任务及其转移轨道设计方法[J]. 导弹与航天运载技术, 2009, 1:7-10) [4] LI Mingtao, ZHENG Jianhua, YU Xizheng, et al. Transfer trajectory design technologies of interplanetary superhighway[J]. J. Astron., 2009, 30(1):72-81(李明涛, 郑建华, 于锡峥, 等. IPS转移轨道设计技术[J]. 宇航学报, 2009, 30(1):72-81) [5] LI Mingtao, ZHENG Jianhua. Research on transfer trajectory correction maneuvers for libration point missions[J]. Chin. J. Space Sci., 2010, 30(6):540-546(李明涛, 郑建华. 平动点任务转移轨道中途修正研究[J]. 空间科学学报, 2010, 30(6):540-546) [6] LI Junfeng, JIANG Fanghua. Survey of low-thrust trajectory optimization methods for deep space exploration[J]. Mech. Eng., 2011, 33(3):1-6(李俊峰, 蒋方华. 连续小推力航天器的深空探测轨道优化方法综述[J]. 力学与实践, 2011, 33(3):1-6) [7] GAO Yang. Interplanetary travel with electric propulsion:technological progress, trajectory design, and comprehensive optimization[J]. Chin. J. Theor. Appl. Mech., 2011, 43(6):991-1019(高扬. 电火箭星际航行:技术进展, 轨道设计与综合优化[J]. 力学学报, 2011, 43(6):991-1019) [8] LIN Shuyu. Electric Propulsion Satellite Orbit Transfer Optimization Strategy Review[C]//Proceedings of the 2nd China space security. Beijing:China's command and control system parallel space security professional committee, 2017:15(林书宇. 电推进卫星轨道转移优化策略综述[C]//第二届中国空天安全会议论文集. 北京:中国指挥与控制学会空天安全平行系统专业委员会, 2017:15) [9] SENENT J, OCAMPO C, CAPELLA A. Low-thrust variable-specific-impulse transfers and guidance to unstable periodic orbits[J]. J. Guid. Cont. Dyn., 2012, 28(2):280-290 [10] Sukhanov A A, Eismont N A. Low thrust transfer to Sun-Earth L1 and L2 points with a constraint on the thrust direction[J]. Proc. Intern. Conf., 2002. DOI: 10.1142/9789812704849_0019 [11] ZHANG C, TOPPUTO F, BEMELLI-ZAZZERA F, et al. Low-thrust minimum-fuel optimization in the circular restricted three-body problem[J]. J. Guid. Cont. Dyn., 2015, 38(8):1-9 [12] RICHARDSON D L. Analytic construction of periodic orbits about the collinear points[J]. Cele. Mech., 1980, 22(3):241-253 [13] NEAR L, VILLAC B F, SCHEERES D J. A simple algorithm to compute hyperbolic Invariant manifolds near L1 and L2[J]. Adv. Astron. Sci., 2004, 4:243 [14] GÓMEZ G, KOON W S, LO M W, et al. Invariant manifolds, the spatial three-body problem and space mission design[J]. Adv. Astron. Sci., 2001, 109:1167-1181 [15] GUO Tieding. Study of Indirect and Pseudo Spectral Methods for Low Thrust Trajectory Optimization in Deep Space Exploration[D]. Beijing:Tsinghua University, 2012(郭铁丁. 深空探测小推力轨迹优化的间接法与伪谱法研究[D]. 北京:清华大学, 2012) [16] LI J. Fuel-optimal low-thrust formation reconfiguration via radau pseudo spectral method[J]. Adv. Space Res., 2016, 58(1):1-16 -
-
计量
- 文章访问数: 1397
- HTML全文浏览量: 172
- PDF下载量: 152
-
被引次数:
0(来源:Crossref)
0(来源:其他)