留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用Cluster卫星磁尾单事例研究具有复杂核心磁场结构的磁通量绳

王洋

王洋. 利用Cluster卫星磁尾单事例研究具有复杂核心磁场结构的磁通量绳[J]. 空间科学学报, 2019, 39(5): 603-612. doi: 10.11728/cjss2019.05.603
引用本文: 王洋. 利用Cluster卫星磁尾单事例研究具有复杂核心磁场结构的磁通量绳[J]. 空间科学学报, 2019, 39(5): 603-612. doi: 10.11728/cjss2019.05.603
WANG Yang. Magnetic Flux Rope with a Complicated Core Field by a Cluster Case[J]. Chinese Journal of Space Science, 2019, 39(5): 603-612. doi: 10.11728/cjss2019.05.603
Citation: WANG Yang. Magnetic Flux Rope with a Complicated Core Field by a Cluster Case[J]. Chinese Journal of Space Science, 2019, 39(5): 603-612. doi: 10.11728/cjss2019.05.603

利用Cluster卫星磁尾单事例研究具有复杂核心磁场结构的磁通量绳

doi: 10.11728/cjss2019.05.603
详细信息
    作者简介:

    王洋,wangyang09@mail.ustc.edu.cn

  • 中图分类号: P352

Magnetic Flux Rope with a Complicated Core Field by a Cluster Case

  • 摘要: 2002年8月28日09:50UT-10:50UT,Cluster卫星在地球磁尾观测到一次导向场磁场重联事件.卫星观测到磁场重联扩散区附近清晰的霍尔(Hall)四极型磁结构.由于导向场的存在,该四极型结构被扭曲变形.在该磁场重联事件中,卫星观测到多个磁通量绳,大部分磁通量绳的核心场极性与导向场极性一致.但是,其中一例磁通量绳的核心场结构极性较复杂.该例磁通量绳中心区域核心场强度出现峰值,核心场极性和导向场极性一致;中心以外区域的核心场极性和导向场极性相反.这种复杂核心场结构以前未见报道.通过最小方向导数法,发现该磁通量绳的轴向是弯曲的.C1和C3卫星穿越了磁通量绳弯曲部分,探测到核心场极性变化;C2和C4卫星位于C1和C3卫星的北侧,仅穿越了磁通量绳弯曲处的一部分,故核心场具有单极性.

     

  • [1] DUNGEY J W. Interplanetary magnetic field and the auroral zones[J]. Phys. Rev. Lett., 1961, 6:47-48
    [2] PARKER E N. Sweet's mechanism for merging fields in conducting fluids[J]. J. Geophys. Res. Atmos., 1957, 62:509-520
    [3] PETSCHEK H E. Magnetic field annihilation[J]. NASA Special Pub., 1963, 50:425
    [4] YOKOYAMA T, TANUMA S, KUDOH T, et al. Magnetic reconnection model of X-ray plasmas in the galactic center[J]. Adv. Space Res., 2000, 25:505-508
    [5] FU X R, LU Q M, WANG S. The process of electron acceleration during collisionless magnetic reconnection[J]. Phys. Plasmas, 2006, 13:423-430
    [6] EASTWOOD J P, PHAN T, OIEROSET M, et al. Average properties of magnetic reconnection ion diffusion regions in the Earth's magnetotail:2001-2005 Cluster observations and comparison with simulations[C]//Agu Fall Meeting. AGU Fall Meeting Abstracts, 2009
    [7] WANG R, LU Q, DU A, et al. In situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons[J]. Phys. Rev. Lett., 2010, 104:175003
    [8] SONNERUP B U. Magnetic field reconnection[J]. Sol. Syst. Plasma Phys., 1979, 50:45-108
    [9] HUBA J D. Hall magnetic reconnection:guide field dependence[J]. Phys. Plasmas, 2005, 12:012322-012322-012326
    [10] WANG R, NAKAMURA R, LU Q, et al. Electron-scale quadrants of the hall magnetic field observed by the magnetospheric multiscale spacecraft during asymmetric reconnection[J]. Phys. Rev. Lett., 2017, 118:DOI: 10.1103/PhysRevLett.118.175101
    [11] COWLEY S W H. Magnetospheric asymmetries associated with the y-component of the IMF[J]. Planet. Space Sci., 1981, 29:79-96
    [12] OTTO A. 3d resistive mhd computations of magnetospheric physics[J]. Comput. Phys. Commun., 1990, 59:185-195
    [13] SLAVIN J A, LEPPING R P, GJERLOEV J, et al. Geotail observations of magnetic flux ropes in the plasma sheet[J]. J. Geophys. Res. Space Phys., 2003, 108:SMP 10-11-SMP 10-18
    [14] DING D Q, LEE L C, MA Z W. Different FTE signatures generated by the bursty single X line reconnection and the multiple X line reconnection at the dayside magnetopause[J]. J. Geophys. Res. Space Phys., 1991, 96:57-66
    [15] SIBECK D G, KUZNETSOVA M, ANGELOPOULOS V, et al. Crater FTEs:simulation results and themis observations[J]. Geophys. Res. Lett., 2008, 35:148-161
    [16] MA Z W, OTTO A, LEE L C. Core magnetic-field enhancement in single X-line, multiple X-line and patchy reconnection[J]. J. Geophys. Res. Space Phys., 1994, 99:6125-6136
    [17] WANG R S, LU Q M, LI X, et al. Observations of energetic electrons up to 200keV associated with a secondary island near the center of an ion diffusion region:a Cluster case study[J]. J. Geophys. Res. Space Phys., 2010, 115:A11201
    [18] DENG X H, MATSUMOTO H, KOJIMA H, et al. Geotail encounter with reconnection diffusion region in the Earth's magnetotail:evidence of multiple X lines collisionless reconnection[J]. J. Geophys. Res. Space Phys., 2004, 109:96-108
    [19] LUI A T Y, DUNLOP M W, REME H, et al. Internal structure of a magnetic flux rope from Cluster observations[J]. Geophys. Res. Lett., 2007, 34.DOI: org/10.1029/2007GL029263
    [20] BORG A L, TAYLOR M G G T, EASTWOOD J P. Observations of magnetic flux ropes during magnetic reconnection in the Earth's magnetotail[J]. Ann. Geophys., 2012, 30:761-773
    [21] BALOGH A, DUNLOP M W. The cluster magnetic field investigation:FGM-specific multipoint analysis[J]. Space Sci. Rev., 2000, 449:65-91
    [22] REME H, AOUSTIN C, BOSQUED M, et al. First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment[J]. Ann. Geophys., 2001, 19:1303-1354
    [23] RUSSELL C T, MELLOTT M M, SMITH E J, et al. Multiple spacecraft observations of interplanetary shocks:four spacecraft determination of shock normals[J]. J. Geophys. Res. Space Phys., 1983, 88:4739-4748
    [24] WANG R, LU Q, HUANG C, et al. Multispacecraft observation of electron pitch angle distributions in magnetotail reconnection[J]. J. Geophys. Res. Space Phys., 2010, 115:5
    [25] WANG R S, NAKAMURA R, LU Q M, et al. Asymmetry in the current sheet and secondary magnetic flux ropes during guide field magnetic reconnection[J]. J. Geophys. Res. Space Phys., 2012, 117:A07223
    [26] PRITCHETT P L, CORONITI F V. Three-dimensional collisionless magnetic reconnection in the presence of a guide field[J]. J. Geophys. Res., 2004, 109:379-384
    [27] HUANG C, WANG R S, LU Q M, et al. Electron density hole and quadruple structure of by during collisionless magnetic reconnection[J]. Chin. Sci. Bull., 2010, 55:708-722
    [28] ZONG Q G, FRITZ T A, PU Z Y, et al. Cluster observations of earthward flowing plasmoid in the tail[J]. Geophys. Res. Lett., 2004, 31:L18803
    [29] HENDERSON P D, OWEN C J, ALEXEEV I V, et al. Cluster observations of flux rope structures in the near-tail[J]. Ann. Geophys., 2006, 24:651-666
    [30] CHEN L J, BHATTACHARJEE A, PUHL-QUINN P A, et al. Observation of energetic electrons within magnetic islands[J]. Nat. Phys., 2008, 4:19-23
    [31] HOFFMANN F D, TELLER E. Magneto-hydrodynamic shocks[J]. Phys. Rev., 1950, 80:692-703
    [32] SHI Q Q, SHEN C, PU Z Y, et al. Dimensional analysis of observed structures using multipoint magnetic field measurements:application to cluster[J]. Geophys. Res. Lett., 2005, 32:273-280
    [33] TAI D P, SONNERUP B U Ö, LIN R P. Fluid and kinetics signatures of reconnection at the dawn tail magnetopause:WIND observations[J]. J. Geophys. Res. Space Phys., 2001, 106:25489-25501
    [34] HUANG C, LU Q, YANG Z, et al. The evolution of electron current sheet and formation of secondary islands in guide field reconnection[J]. Nonlin. Proces. Geophys., 2011, 18:727-733
    [35] PASCHMANN G, DALY P W. Multi-spacecraft Analysis Methods Revisited[M]. Bern, Switzerland:International Space Science Institute, 2008
    [36] KARIMABADI H, KRAUSS-VARBAN D, OMIDI N, et al. Magnetic structure of the reconnection layer and core field generation in plasmoids[J]. J. Geophys. Res. Space Phys., 1999, 104:12313-12326
  • 加载中
计量
  • 文章访问数:  883
  • HTML全文浏览量:  75
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-21
  • 修回日期:  2019-03-05
  • 刊出日期:  2019-09-15

目录

    /

    返回文章
    返回