留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硬质落球大气探测技术

韩连刚 杨明星 齐鑫 王珂 桂苏嘉

韩连刚, 杨明星, 齐鑫, 王珂, 桂苏嘉. 硬质落球大气探测技术[J]. 空间科学学报, 2019, 39(5): 655-661. doi: 10.11728/cjss2019.05.655
引用本文: 韩连刚, 杨明星, 齐鑫, 王珂, 桂苏嘉. 硬质落球大气探测技术[J]. 空间科学学报, 2019, 39(5): 655-661. doi: 10.11728/cjss2019.05.655
AN Liangang, YANG Mingxing, QI Xin, WANG Ke, GUI Sujia. Rigid Falling Sphere Technics in Air Observation[J]. Chinese Journal of Space Science, 2019, 39(5): 655-661. doi: 10.11728/cjss2019.05.655
Citation: AN Liangang, YANG Mingxing, QI Xin, WANG Ke, GUI Sujia. Rigid Falling Sphere Technics in Air Observation[J]. Chinese Journal of Space Science, 2019, 39(5): 655-661. doi: 10.11728/cjss2019.05.655

硬质落球大气探测技术

doi: 10.11728/cjss2019.05.655
详细信息
    作者简介:

    韩连刚,han_lg999@163.com

  • 中图分类号: P353

Rigid Falling Sphere Technics in Air Observation

  • 摘要: 为拓展大气探测高度范围,开展了硬质落球大气探测技术研究.以7inch硬质落球为例,开展了弹道仿真计算,进一步利用参考大气数据推算了落球可能承受的气动阻力加速度,显现出对加速度测量准确性的高要求;分析了杆臂效应引入的附加加速度及其对加速度测量结果的干扰程度;讨论了几种典型的阻力系数计算方法及其计算偏差状况;考虑了可能的电磁兼容风险及小型化设计与制造的必要性.基于落球工作机理与上述关键技术、特性的分析与研究,完成了一种硬质落球设计,确定了运动参数的测量方法、杆臂效应的抑制措施,明确了落球总体性能指标.通过演示验证飞行试验实测数据与仿真数据的对比分析,证明了技术方案的可行性、合理性、实际测量结果与预期的符合性.

     

  • [1] JONES L M. Rigid Aluminum Spheres Transit-time Accelerometer[J]. Rev. Sci. Instr., 1956, 27:374-377
    [2] JONES L M, SCHAEFER E J, SCHULTE H F. Upper-air Density and Temperatures from Eight IGY Rocket Flights by the Falling-sphere Method[R]. Washington:IGY Rocket Report Series, 1959(5):1-38
    [3] PETERSON J W, SCHULTE H F, SCHAEFER E J. A Simplified Falling-sphere Method for Upper-Air Density Part Ⅱ. Density and Temperature Results from Eight Flight[R]. Ann Arbor, MI:University of Michigan, 1959:1-86
    [4] SCHULTE H F, ROBINSON D A, WAGENER J L. Falling-sphere Experiment for Upper-air Density:Instrumentation Developments[R]. Ann Arbor, MI:University of Michigan, 1962:1-42
    [5] FAIRE A C. AFCRL Rigid Falling Sphere Program[R]. Bedford, MA:Air Force Cambridge Research Laboratories, 1963:1-68
    [6] NASA. A study of 30km to 200km Meteorological Rocket Sounding System, Volume 1:Part One[R]. Washington:NASA, 1970:254-307
    [7] PHILBRICK C, MCISAAC J, FRYKUND D, et al. Atmospheric Structure Measurements from Accelerometer Instrumented Falling Spheres[R]. Wuppertal, North Rhine-Westphalia:Wuppertal University, Sounding Rocket Program Aeronomy Project, 1981:352-361
    [8] JAMES K LUERS. A Method of Computing Winds, Density, Temperature, Pressure, and Their Associated Errors from the High-altitude ROBIN Sphere Using an Optimum Filter[R]. Dayton OH:University of Dayton, 1970:1-80
    [9] BORDOGNA M T, FIDJELAND L, FJALLID M, et al. MUSCAT experiment:active free falling units for in situ measurements of temperature and density in the middles atmosphere[C]//21st ESA Symposium-European Rocket and Balloon Programs and Related Research. Thun, Switzerland:ESA Communications, 2013:575-582
    [10] LI Qiang, BORIS S, MARKUS R, et al. Active falling sphere for high-resolution measurement of density, temperature, and horizontal winds in the middle atmosphere[C]//21st ESA Symposium-European Rocket and Balloon Programs and Related Research. Thun, Switzerland:ESA Communications, 2013:361-366
    [11] World Meteorological Organization. Guide to Meteorological Instruments and Methods of Observation[R]. Geneva:World Meteorological Organization, 2010
    [12] FLEMING E L, CHANDRA S, SCHOEBERL M R, et al. Monthly mean global climatology of temperature, wind, geopotential height and pressure for 0~120km[J]. Adv. Space Res., 1990, 10(6):3-12
    [13] JOSHUA F MARTINEAU. In Situ Method of Measuring Atmosphere Neutral Winds with a Rigid Falling Sphere[D]. Logan UT:Utah State University, 2012:1-61
    [14] SCHLEGEL D, FOLEA M, ROMAN A, et al. Surface analysis of machined fiber glass composite material[J]. Rec. Res. Manuf. Engin., 2011:152-155
    [15] HENDERSON C B. Drag coefficient of spheres in continuum and rarefied flows[J]. AIAA J., 1976, 14(6):707-708
    [16] FLEMMER R L C, BANKS C L. On the drag coefficient of a sphere[J]. Powder Technol., 1986, 48(3):217-221
    [17] JAN B S, HARTMUT E. High precision drag deceleration measurement system to use onboard active falling sphere[C]//21st ESA Symposium-European Rocket and Balloon Programs and Related Research. Thun, Switzerland:ESA Communications, 2013:377-381
    [18] LI Zhihui, PENG Aoping, FANG Fang, et al. Gas-kinetic unified algorithm for hypersonic aerothermodynamics covering various flow regimes solving Boltzmann model equation[J]. Acta Phys. Sin., 2015, 64(22):1-16(李志辉, 彭傲平, 方方, 等. 跨流域高超声速绕流环境Boltzmann模型方程统一算法研究, 物理学报, 2015, 64(22):1-16)
    [19] BURTON R, et al. Dual attitude and parameter estimation of passively magnetically stabilized nano satellites[J]. Acta Astron., 2014, 94:145-158
    [20] YUAN Yunxia, NICKOLAY I, GUNNAR T, et al. Reconstruction of attitude dynamics of free falling units[C]//22nd ESA Symposium-European Rocket and Balloon Programs and Related Research. Tromso, Norway:ESA Communications, 2015:107-113
    [21] MANUEL M, EMILIO J M, EVA G, et al. GRANASAT multi-sensor attitude determination system tested in BEXUS19 stratospheric balloon[C]//22nd ESA Symposium-European Rocket and Balloon Programs and Related Research. Tromso, Norway:ESA Communications, 2015:369-376
  • 加载中
计量
  • 文章访问数:  845
  • HTML全文浏览量:  94
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-05
  • 修回日期:  2019-02-26
  • 刊出日期:  2019-09-15

目录

    /

    返回文章
    返回