留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BDS/GPS和经验模型的区域电离层建模

梁川 符杰林 王俊义 范玉荣

梁川, 符杰林, 王俊义, 范玉荣. 基于BDS/GPS和经验模型的区域电离层建模[J]. 空间科学学报, 2020, 40(1): 20-27. doi: 10.11728/cjss2020.01.020
引用本文: 梁川, 符杰林, 王俊义, 范玉荣. 基于BDS/GPS和经验模型的区域电离层建模[J]. 空间科学学报, 2020, 40(1): 20-27. doi: 10.11728/cjss2020.01.020
LIANG Chuan, FU Jielin, WANG Junyi, FAN Yurong. Regional Ionosphere Modeling Based on BDS/GPS and Empirical Model[J]. Chinese Journal of Space Science, 2020, 40(1): 20-27. doi: 10.11728/cjss2020.01.020
Citation: LIANG Chuan, FU Jielin, WANG Junyi, FAN Yurong. Regional Ionosphere Modeling Based on BDS/GPS and Empirical Model[J]. Chinese Journal of Space Science, 2020, 40(1): 20-27. doi: 10.11728/cjss2020.01.020

基于BDS/GPS和经验模型的区域电离层建模

doi: 10.11728/cjss2020.01.020
详细信息
    作者简介:

    符杰林,E-mail:hmfjl@guet.edu.cn

  • 中图分类号: P352

Regional Ionosphere Modeling Based on BDS/GPS and Empirical Model

  • 摘要: 基于北斗卫星导航系统(BDS)和全球定位系统(GPS)实测电离层穿刺点(IPP)数据,结合国际参考电离层(IRI)经验模型历史数据,提出一种对区域二维电离层总电子含量(TEC)进行高精度建模的方法.针对缺乏穿刺点的区域内短时间电离层建模时精度较低且各时段穿刺点空间分布不同的问题,该方法使用IRI模型在建模区域内均匀添加虚拟穿刺点数据,并根据与实测穿刺点的距离,使用构造的权重计算公式赋予其动态权重值,通过加权最小二乘法进行球谐模型参数解算.与欧洲定轨中心(CODE)发布的全球电离层图(GIM)进行数据比对发现,相对于只使用BDS/GPS实测穿刺点数据的建模方法,利用本文建模方法计算获得的垂直总电子含量(VTEC)值对缺乏实测穿刺点的区域精度有明显的提升.

     

  • [1] YUAN Yunbin, HUO Xingliang, ZHANG Baocheng. Research progress of precise models and correction for GNSS ionospheric delay in China over recent years[J]. Acta Geodaet. Cartograph. Sin., 2017, 46(10):1364-1378(袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10):1364-1378)
    [2] AFRAIMOVICH E L, YASUKEVICH Y V. Using GPS-GLONASS-GALILEO data and IRI modeling for ionospheric calibration of radio telescopes and radio interferometers[J]. J. Atmos. Sol. Terr. Phys., 2008, 70(15):1949-1962
    [3] ARORA B S, MORGAN J, ORD S M, et al. Ionospheric modelling using GPS to calibrate the MWA. I:Comparison of first order ionospheric effects between GPS models and MWA observations[J]. Publ. Astron. Soc. Aust., 2015, 32:1-25
    [4] SCHAER S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System[D]. Zürich:Schweizerische Geodätische Kommission, 1999
    [5] ZHANG Xiaohong, LI Zhenghang, CAI Changsheng. Study on regional ionospheric model using dual-frequency GPS measurements[J]. Geomat. Inf. Sci. Wuhan Univ., 2001, 26(2):140-143,159
    [6] YUAN Yunbin, OU Jikun. A generalized trigonometric series function model for determining ionospheric delay[J]. Prog. Nat. Sci., 2004, 14(11):1010-1014
    [7] LIU Jingbin, CHEN Ruizhi, WANG Zemin, et al. Spherical cap harmonic model for mapping and predicting regional TEC[J]. GPS Solut., 2011, 15(2):109-119
    [8] LIU Jingbin, WANG Zemin, ZHANG Hongping, et al. Comparison and consistency research of regional ionospheric TEC models based on GPS measurements[J]. Geomat. Inf. Sci. Wuhan Univ., 2008, 33(5):479-483
    [9] YANG Kai, XUE Junchen, SONG Shuli, et al. Establishment and assessment of China regional ionosphere model based on CMONOC[J]. J. Geodesy Geodyn., 2016, 36(2):138-142,157
    [10] ZHANG Rui, SONG Weiwei, YAO Yibin, et al. Modeling regional ionospheric delay with ground-based Beidou and GPS observations in China[J]. GPS Solut., 2015, 19(4):649-658
    [11] WANG Jian, DANG Yamin, WANG Hu, et al. Research on multisystem fusion global ionospheric modeling[J]. Bull. Surv. Map., 2018, 6:7-11
    [12] LI Zhenghang, HUANG Jinsong. GPS Surveying and Data Processing[M]. 3rd ed. Wuhan:Wuhan University Press, 2016
    [13] SOTOMAYOR-BELTRAN C, SOBEY C, HESSELS J, et al. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes[J]. Astron. Astrophys., 2013, 552:A58. DOI: 10.1051/0004-6361/201220728
    [14] DETTMERING D, SCHMIDT M, HEINKELMANN R, et al. Combination of different space-geodetic observations for regional ionosphere modeling[J]. J. Geodesy, 2011, 85(12):989-998
    [15] CHEN Peng, YAO Wanqiang, ZHU Xuejun. Combination of ground- and space-based data to establish a global ionospheric grid model[J]. IEEE Trans. Geosci. Remote Sens., 2015, 53(2):1073-1081
    [16] YAO Yibin, LIU Lei, KONG Jian, et al. Global ionospheric modeling based on multi-GNSS, satellite altimetry, and Formosat-3/COSMIC data[J]. GPS Solut., 2018, 22(4):104. DOI: 10.1007/s10291-018-0770-6
    [17] WANG Cheng, WANG Jiexian, DUAN Bingbing. Global ionospheric model with International Reference Ionosphere constraint[J]. Geomat. Inf. Sci. Wuhan Univ., 2014, 39(11):1340-1346
    [18] WANG Yueliang, LI Bofeng, WANG Miaomiao, et al. Global ionosphere spheric harmonic function modeling with virtual TEC observations of empirical models[J]. Prog. Geophys., 2017, 32(3):1043-1050
    [19] SCHAER S, BEUTLER G, MERVART L, et al. Global and regional ionosphere models using the GPS double difference phase observable[C]//Proceedings of the IGS Workshop "Special Topics and New Directions". Potsdam:GeoForschungsZentrum Potsdam 1995:77-92
    [20] SCHAER S, BEUTLER G, ROTHACHER M, et al. Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center[C]//Proceedings of the IGS Analysis Center Workshop 1996. California:Jet Propulsion laboratory California Institute of Technology, 1996:181-192
    [21] ALCAY Salih, YIGIT Cemal, SEEMAL Gopi, et al. GPS-Based ionosphere modeling:a brief review[J]. Fresen. Environ. Bull., 2014, 23:815-824
    [22] JIN Rui, JIN Shuanggen, FENG Guiping. M_DCB:matlab code for estimating GNSS satellite and receiver differential code biases[J]. GPS Solut., 2012, 16(4):541-548
    [23] ZHANG Jing, LIU Jingnan, LI Cong. Research and discussion on the International Reference Ionosphere model[J]. J. Guilin Univ. Technol., 2017, 37(1):114-119
  • 加载中
计量
  • 文章访问数:  827
  • HTML全文浏览量:  66
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-25
  • 修回日期:  2019-08-24
  • 刊出日期:  2020-01-15

目录

    /

    返回文章
    返回