On-orbit Geometric Calibration of Ionospheric Imager Based on Stellar
-
摘要: 三轴稳定的地球静止轨道卫星在轨运行期间温度会有周期性变化.其上装载的远紫外电离层成像仪与卫星之间的热应力变化造成机械传递,导致仪器指向与装星时的初始位置发生偏差.恒星在惯性坐标系中的位置保持不变,可以将其作为电离层成像仪在轨几何定标的定标源.本文建立了基于恒星的电离层成像仪在轨几何定标模型,通过拍摄所筛选恒星图像,得出仪器在轨指向相对于初始值的偏离程度,从而提高电离层成像仪的成像几何精度.通过模拟试验,验证了运用此技术进行在轨几何定标的可行性.研究结果可为电离层成像仪常态化自动在轨几何定标奠定基础.Abstract: The surface temperature of the three-axis stabilized Geostationary Orbit (GEO) satellite will change periodically during orbital operation. The thermal stress changes of the far-ultraviolet ionospheric imager and the satellite cause mechanical transmission, which causes the instrument pointing to deviate from the initial position as it is installed on the satellite. Stellar position in the inertial coordinate system remains constant, which can be used as the calibration source for the on-orbit geometric calibration of the ionospheric imager. An on-orbit geometric calibration model based on stellar is established. By taking images of the selected stellar, the deviation of the instrument on-orbit pointing from the initial value is obtained, and the imaging geometric accuracy of the ionospheric imager is improved. Finally, a simulation experiment is carried out to verify the feasibility of using this technique to perform on-orbit geometric calibration.
-
Key words:
- Stellar /
- Far-ultraviolet /
- Imaging /
- Geometric calibration /
- Ionosphere
-
[1] JIANG Fang, MAO Tian, LI Xiaoyin, et al. The research on NmF2 and TEC derived from nighttime OI 135.6nm emission measurement[J]. Chin. J. Geophys., 2014, 57(11):3679-3687(江芳, 毛田, 李小银, 等. 利用OI 135.6nm夜气辉辐射探测电离层峰值电子密度及电子总含量的研究[J]. 地球物理学报, 2014, 57(11):3679-3687) [2] STRICKLAND D J, EVANS J S, PAXTON L J. Satellite remote sensing of thermospheric O/N2 and solar EUV:I. Theory[J]. J. Geophys. Res.:Space Phys., 1995, 100(A7):12217-12226 [3] KAMALABADI F, COMBERIATE J M, TAYLOR M J, et al. Estimation of electron densities in the lower thermosphere from GUVI 135.6nm tomographic inversions in support of SpreadFEx[J]. Ann. Geophys., 2009, 27(6):2439-2448 [4] WANG Xixi, FANG Hanxian, NIU Jun. Analysis of ionospheric irregularities in F layer based on COSMIC data[J]. Chin. J. Geophys., 2016, 59(2):419-425(王栖溪, 方涵先, 牛俊. 基于COSMIC资料分析电离层F层不规则体结构[J]. 地球物理学报, 2016, 59(2):419-425) [5] PARK S H, ENGLAND S L, IMMEL T J, et al. A method for determining the drift velocity of plasma depletions in the equatorial ionosphere using Far-ultraviolet spacecraft observations[J]. J. Geophys. Res.:Space Phys., 2007, 112(A11314).DOI: 10.1029/2007JA012327 [6] SHI Hao, ZHANG Donghe, HAO Yongqiang, et al. Modeling study of the effect of ionospheric scintillation at low latitudes in China[J]. Chin. J. Geophys., 2014, 57(3):691-702(侍颢, 张东和, 郝永强, 等. 中国低纬度地区电离层闪烁效应模式化研究[J]. 地球物理学报, 2014, 57(3):691-702) [7] WANG Mi, CHENG Yufeng, CHANG Xueli, et al. High accuracy on-orbit geometric calibration of geostationary satellite GF4[J]. Acta Geod. Cartog. Sin., 2017, 46(1):53-61(王密, 程宇峰, 常学立, 等. 高分四号静止轨道卫星高精度在轨几何定标[J]. 测绘学报, 2017, 46(1):53-61) [8] GUO Yongfu. Research on the temperature of satellite on geostationary orbit[J]. Spacecraft Eng., 2011, 20(1):76-81(郭永富. 静止轨道卫星在轨温度参数变化规律研究[J]. 航天器工程, 2011, 20(1):76-81) [9] ZHANG Yue, WANG Chao, SU Yun, et al. Thermal control scheme for ultrahigh resolution imaging system on geosynchronous orbit[J]. Infrared Laser Eng., 2014, 43(9):3116-3121(张月, 王超, 苏云, 等. 地球静止轨道甚高分辨率成像系统热控方案[J]. 红外与激光工程, 2014, 43(9):3116-3121) [10] STERCKX S, BENHADJ I, DUHOUX G, et al. The PROBA-V mission:image processing and calibration[J]. Int. J. Remote Sens., 2014, 35(7):2565-2588 [11] LI Deren, WANG Mi. On-orbit geometric calibration and accuracy assessment of ZY-3[J]. Spacecraft Recovery Remote Sens., 2012, 33(3):1-6(李德仁, 王密. "资源三号"卫星在轨几何定标及精度评估[J]. 航天返回与遥感, 2012, 33(3):1-6) [12] LI Jing, WANG Rong, ZHU Leiming, et al. In-flight geometric calibration for mapping Satellite-1 surveying and mapping camera[J]. J. Remote Sens., 2012, 16(s1):35-39(李晶, 王蓉, 朱雷鸣, 等. "天绘一号"卫星测绘相机在轨几何定标[J]. 遥感学报, 2012, 16(s1):35-39) [13] KIM H, KIM E, CHUNG D W, et al. Geometric calibration using stellar sources in earth observation satellite[J]. Trans. Jpn. Soc. Aeronaut. Space Sci., 2009, 52(176):104-107 [14] LIN P D, SUNG C K. Comparing two new camera calibration methods with traditional pinhole calibrations[J]. Opt. Express, 2007, 15(6):3012-3022. DOI:10. 1364/OE.15.003012 [15] HONG Y, REN G, LIU E. Non-iterative method for camera calibration[J]. Opt. Express, 2015, 23(18):23992. DOI: 10.1364/OE.23.023992 [16] LIEBE C C. Accuracy performance of star Trackers-A tutorial[J]. IEEE Trans. Aero. Electr. Sys., 2002, 38(2):587-599 [17] CHENG Yufeng, RUN Yi, WANG Mi. On-orbit calibration approach for optical navigation sensor in deep space exploration[J]. J. Deep Space Explor., 2016, 3(3):228-236(程宇峰, 润一, 王密. 深空探测光学导航敏感器在轨几何定标方法[J]. 深空探测学报, 2016, 3(3):228-236) [18] ZHANG Renwei. Satellite Orbit Attitude Dynamics and Control[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 1998:207-208(章仁为. 卫星轨道姿态动力学与控制[M]. 北京:北京航空航天大学出版社, 1998:207-208) [19] RADHADEVI P V, MÜLLER R. In-flight geometric calibration and orientation of ALOS/PRISM imagery with a generic sensor model[J]. Photogramm. Eng. Remote Sens., 2011, 77(5):531-538 [20] QIN Yongyuan. Inertial Navigation[M]. Beijing:Science Press, 2006:5-8(秦永元. 惯性导航[M]. 北京:科学出版社, 2006:5-8) [21] ZHANG Hui, HAO Yongjie. Simulation for view field of star sensor based on STK[J]. Comput. Simulat., 2011, 28(7):83-86(张辉, 郝永杰. 基于STK的卫星星敏感器视场仿真研究[J]. 计算机仿真, 2011, 28(7):83-86) -
-
计量
- 文章访问数: 1007
- HTML全文浏览量: 129
- PDF下载量: 89
-
被引次数:
0(来源:Crossref)
0(来源:其他)