Adaptability Analysis of GPT2w Model in High Latitudes
-
摘要: GPT2w模型是现有精度最高的天顶对流层模型,但是应用在高纬度地区时存在较大误差.为更好地保障卫星导航定位系统在高纬度地区的高精度应用,评定了GPT2w模型在高纬度地区的精度,获取天顶对流层湿延迟、干延迟和总延迟,探讨了GPT2w模型改正对精密单点定位的影响.试验结果表明: GPT2w模型在高纬度地区的精度为厘米级,优于其在中低纬度地区的精度;南北极地区天顶对流层呈现明显季节变化特征和区域一致性特征,夏季天顶对流层总延迟高于冬季,北极地区天顶对流层湿延迟明显高于南极地区,北极地区天顶对流层随季节的变化幅度大于南极地区.PPP试验结果表明,GPT2w模型能够有效改善定位精度,适应高纬度地区的高精度定位需求.Abstract: The GPT2w model is the most accurate zenith tropospheric model in current, but there exists large error at high latitudes. In order to better ensure the high-precision application of satellite navigation and positioning system in high latitudes, the accuracy of GPT2w model in high latitudes is evaluated, and GPT2w model is used to obtain zenith tropospheric wet delay, dry delay and total delay, and the impact of GPT2w model correction on precise point positioning is explored. The test results show that the accuracy of GPT2w model in high latitudes is in the centimeter level, which is better than that in the middle and low latitudes. The zenith tropospheric delay in the Antarctic and Arctic regions has obvious seasonal variation characteristics and regional consistency characteristics. The total tropospheric delay in summer is higher than that in winter. The tropospheric delay in the Arctic region is significantly higher than that in the Antarctic region, and the zenith tropospheric delay in the Arctic region varies with the seasons more than the Antarctic region. The PPP test results show that the GPT2w model can effectively improve the positioning accuracy and adapt to high-precision positioning in high latitudes.
-
Key words:
- GPT2w model /
- Zenith wet delay /
- Zenith tropospheric delay /
- PPP
-
[1] LI Zhenhang, ZHANG Xiaohong. New Techniques and Precise Data Processing Methods of Satellite Navigation and Positioning[M]. Wuhan:Wuhan University Press, 2009(李征航, 张小红. 卫星导航定位新技术及高精度数据处理方法[M]. 武汉:武汉大学出版社, 2009) [2] LI Wei, YUAN Yunbin, OU Jikun, et al. A new global zenith tropospheric delay model IGGtrop for GNSS applications[J]. Chin. Sci. Bull., 2012, 57(17):2132-2139 [3] LI Wei, YUAN Yunbin, OU Jikun, et al. New versions of the BDS/GNSS zenith tropospheric delay model IGGtrop[J]. J. Geodesy, 2015, 89(1):73-80 [4] LI Wei,YUAN Yunbin, OU Jikun, et al. IGGtrop_SH and IGGtrop_rH:two improved empirical tropospheric delay models based on vertical reduction functions[J]. IEEE Trans. Geosci. Remote Sens., 2018, 56(9):1-13 [5] YAO Yibin, ZHANG Bao, YAN Feng, et al. Two new sophisticated models for tropospheric delay corrections[J]. Chin. J. Geophys., 2015, 58(5):1492-1501(姚宜斌, 张豹, 严凤, 等. 两种精化的对流层延迟改正模型[J]. 地球物理学报, 2015, 58(5):1492-1501) [6] LEANDRO R F, SANTOS M C, LANGLEY R B. UNB neutral atmosphere models:development and performance. Proceedings of ION NTM 2006[C]//The 2006 National Technical Meeting. Monterey:the Institute of Navigation, 2006:564-573 [7] LEANDRO R F, LANGLEY R B, SANTOS M C. UNB3m_pack:a neutral atmosphere delay package for radiometric space techniques[J]. GPS Solut., 2008, 12(1):65-70 [8] PENNA N, DODSON A, CHEN W. Assessment of EGNOS tropospheric correction model[J]. J. Navig., 2001, 54(1):37-55 [9] KOUBA J. Testing of Global Pressure/Temperature (GPT) model and Global Mapping Function (GMF) in GPS analyses[J]. J. Geodesy, 2009, 83(3/4):199-208 [10] LAGLER K, SCHINDELEGGER M, BÖHM J, et al. GPT2:empirical slant delay model for radio space geodetic techniques[J]. Geophys. Res. Lett., 2013, 40(6):1069-1073 [11] ZHANG H, LI Wei, YUAN Yunbin, et al. Assessment of three tropospheric delay models (IGGtrop, EGNOS and UNB3m) based on precise point positioning in the Chinese region[J]. Sensors, 2016, 16(1):122 [12] YAO Yibin, HE Changyong, ZHANG Bao, et al. A new global zenith tropospheric model GZTD[J]. Chin. J. Geophys., 2013, 56(7):2218-2227(姚宜斌, 何畅勇, 张豹, 等. 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报, 2013, 56(7):2218-2227) [13] CHEN W, GAO C, PAN S. Assessment of GPT2 empirical troposphere model and application analysis in precise point positioning[J]. Lect. Notes Elect. Eng., 2014, 304(2):451-463 [14] YAO Yibin, CAO Na, XU Chaoling, et al. Accuracy assessment and analysis for GPT2[J]. Acta Geodaet. Cartograph. Sin., 2015, 44(7):726-733(姚宜斌, 曹娜, 许超钤, 等. GPT2模型的精度检验与分析[J]. 测绘学报, 2015, 44(7):726-733) [15] JOHANNES Böhm, GREGOR Möller, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solut., 2015, 19(3):433-441 [16] HUA Zhonghao, LIU Lintao, LIANG Xinghui. An assessment of GPT2w model and fusion of a troposphere model with in situ data[J]. Geomat. Inf. Sci. Wuhan Univ, 2017, 42(10):1468-1473(滑中豪, 柳林涛, 梁星辉. GPT2w模型检验以及对流层模型的参数互融[J]. 武汉大学学报:信息科学版, 2017, 42(10):1468-1473) [17] KONG Jian, YAO Yibin, WANG Zeming, et al. The accuracy analysis of GPT2w at antarctic area[J]. Acta Geodaet. Cartograph. Sin., 2018, 10:1001-1595(孔健, 姚宜斌, 王泽民, 等. GPT2w模型在南极地区精度分析[J]. 测绘学报, 2018, 10:1001-1595) [18] SAASTAMOINEN J H. Atmospheric correction for the troposphere and the stratosphere in radio ranging satellites[J]. Use Artif. Satell. Geod., 1972, 15(6):247-251 [19] ASKNE J, NORDIUS H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio Sci., 2016, 22(3):379-386 -
-
计量
- 文章访问数: 1630
- HTML全文浏览量: 260
- PDF下载量: 87
-
被引次数:
0(来源:Crossref)
0(来源:其他)