留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力条件下初始液氢温度对低温推进剂贮箱气枕压力的影响

王妍卉 周炳红

王妍卉, 周炳红. 微重力条件下初始液氢温度对低温推进剂贮箱气枕压力的影响[J]. 空间科学学报, 2020, 40(3): 394-400. doi: 10.11728/cjss2020.03.394
引用本文: 王妍卉, 周炳红. 微重力条件下初始液氢温度对低温推进剂贮箱气枕压力的影响[J]. 空间科学学报, 2020, 40(3): 394-400. doi: 10.11728/cjss2020.03.394
WANG Yanhui, ZHOU Binghong. Effect of Initial Liquid Hydrogen Temperature on the Pressure Changes in the Cryogenic Propellant Tank[J]. Chinese Journal of Space Science, 2020, 40(3): 394-400. doi: 10.11728/cjss2020.03.394
Citation: WANG Yanhui, ZHOU Binghong. Effect of Initial Liquid Hydrogen Temperature on the Pressure Changes in the Cryogenic Propellant Tank[J]. Chinese Journal of Space Science, 2020, 40(3): 394-400. doi: 10.11728/cjss2020.03.394

微重力条件下初始液氢温度对低温推进剂贮箱气枕压力的影响

doi: 10.11728/cjss2020.03.394 cstr: 32142.14.cjss2020.03.394
基金项目: 

北京市科技重大专项项目资助(Z181100002918004)

详细信息
    作者简介:
    • 周炳红,E-mail:bhzhou@nssc.ac.cn
  • 中图分类号: V524

Effect of Initial Liquid Hydrogen Temperature on the Pressure Changes in the Cryogenic Propellant Tank

  • 摘要: 自生增压液氢推进剂贮箱在轨滑行阶段将长期(数百秒)处于微重力环境下,其贮箱压力受多种因素影响.液氢低温推进剂接近饱和温度时,因传热等影响而极易产生相变,从而影响贮箱压力.通过建立贮箱三维CFD模型,研究了不同初始液氢推进剂温度对于贮箱压力和温度变化等的影响.计算结果表明,气液界面附近推进剂温度与当前气体压力下饱和温度之差(过冷度)越大,压力下降速率越大.随着气体压力下降,气枕温度降低,压力下降速率也逐渐减小,压力变化曲线趋于平缓.在初始液体推进剂温度低于平衡温度的情况下,初始液体推进剂温度越高,平衡压力越高.

     

  • [1] CHU Guimin. Propellant management of cryogenic upper stage during coast[J]. Missle Space Vehcile, 2007, 287(1):27-31(褚桂敏. 低温上面级滑行段的推进剂管理[J]. 导弹与航天运载技术, 2007, 287(1):27-31)
    [2] ZILLIAC G, KARABEYOGLU M A. Modeling of propellant tank pressurization[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Tucson:AIAA, 2005:3549
    [3] KARTUZOVA O, KASSEMI M. Modeling interfacial turbulent heat transfer during ventless pressurization of a large scale cryogenic storage tank in microgravity[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. San Diego:AIAA, 2011:6037
    [4] CORPENING J H. Analytic modeling of pressurization and cryogenic propellant conditions for lunar landing vehicle[C]//57th JANNAF Joint Propulsion Meeting. Colorado:NASA, 2010:M10-0427
    [5] CHEN Hong, GAO Xu, REN Gang, et al. CFD study on discharging process of liquid hydrogen in tank with helium as pressurized gas[J]. Cryogenics, 2015, 206(4):33-38(陈虹, 高旭, 任刚, 等. 氦气作为增压气体排出贮罐内液氢过程的CFD分析[J]. 低温工程, 2015, 206(4):33-38)
    [6] LIU Zhan, LI Yanzhong, WANG Lei, et al. Evaporation calculation and pressurization process of on-orbit cryogenic liquid hydrogen storage tank[J]. J. Xi'an Jiaotong Univ., 2015, 49(2):135-140(刘展, 厉彦忠, 王磊, 等. 在轨运行低温液氢箱体蒸发量计算与增压过程研究[J]. 西安交通大学学报, 2015, 49(2):135-140)
    [7] LI Jiachao, LIANG Guozhu. Numerical simulation of phase change and heat transfer in crygenic tank under the ground and microgravity condition[J]. Chin. J. Space Sci., 2016, 36(4):513-519(李佳超, 梁国柱. 地面及微重力条件下低温贮箱内相变和传热的数值仿真[J]. 空间科学学报, 2016, 36(4):513-519)
    [8] LIU Zhan, SUN Peijie, LI Peng, et al. Research on thermal stratification of cryogenic liquid oxygen tank in microgravity[J]. Cryogenics, 2016, 209(1):25-31(刘展, 孙培杰, 李鹏, 等. 微重力下低温液氧贮箱热分层研究[J]. 低温工程, 2016, 209(1):25-31)
    [9] PLACHATA D W, CHRISTIE R J, JURNS J M, et al. Passive ZBO storage of liquid hydrogen and liquid oxygen applied to space science mission concepts[J]. Cryogenics, 2006, 46(2):89-97
    [10] HASTINGS L J, PLACHTA D W, SALERNO L, et al. An overview of NASA efforts on zero boil storage of cryogenics propellants[J]. Cryogenics, 2002, 41:833-839
    [11] SHAO Yetao, LUO Shu, WANG Haosu, et al. Research on the supercooling loading technology of cryogenic propellant and its effects on rocket performance[J]. Astronaut. Syst. Eng. Tech., 2019, 3(2):18-25(邵业涛, 罗庶, 王浩苏, 等. 低温推进剂深度过冷加注技术研究及对运载火箭性能影响分析[J]. 宇航总体技术, 2019, 3(2):18-25)
    [12] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. J. Comput. Phys., 1992, 100:335-354
    [13] XU Jiyun. Boiling Heat Transfer and Gas-liquid Two-phase Flow[M]. Beijing:Atomic Energy Press, 2001:215-220(徐济鋆. 沸腾传热和气液两相流[M]. 北京:原子能出版社, 2001:215-220)
    [14] ZHOU Binghong, WANG Yanhui, GA Yongjing, et al. Model simplification method in numerical simulation of complex flow and heat transfer process of launch vehicle propellant[J]. Astronaut. Syst. Eng. Tech., 2019, 3(2):26-29(周炳红, 王妍卉, 尕永婧, 等. 运载火箭推进剂复杂流动传热问题数值模拟中的模型简化方法[J]. 宇航总体技术, 2019, 3(2):26-29)
  • 加载中
计量
  • 文章访问数:  1450
  • HTML全文浏览量:  263
  • PDF下载量:  58
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2019-05-13
  • 修回日期:  2019-12-24
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回