留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

充液航天器大角度机动自适应无源控制

王宏伟 宋晓娟 李长杰

王宏伟, 宋晓娟, 李长杰. 充液航天器大角度机动自适应无源控制[J]. 空间科学学报, 2020, 40(3): 408-418. doi: 10.11728/cjss2020.03.408
引用本文: 王宏伟, 宋晓娟, 李长杰. 充液航天器大角度机动自适应无源控制[J]. 空间科学学报, 2020, 40(3): 408-418. doi: 10.11728/cjss2020.03.408
WANG Hongwei, SONG Xiaojuan, LI Changjie. Adaptive Passive Control for Large-angle Attitude Maneuver of Liquid-filled Spacecraft[J]. Chinese Journal of Space Science, 2020, 40(3): 408-418. doi: 10.11728/cjss2020.03.408
Citation: WANG Hongwei, SONG Xiaojuan, LI Changjie. Adaptive Passive Control for Large-angle Attitude Maneuver of Liquid-filled Spacecraft[J]. Chinese Journal of Space Science, 2020, 40(3): 408-418. doi: 10.11728/cjss2020.03.408

充液航天器大角度机动自适应无源控制

doi: 10.11728/cjss2020.03.408 cstr: 32142.14.cjss2020.03.408
基金项目: 

国家自然科学基金项目(11962020,11862020,11502122)和内蒙古自然科学基金项目(2019MS05065)共同资助

详细信息
    作者简介:
    • 宋晓娟,E-mail:xjsong0603@163.com
  • 中图分类号: V448

Adaptive Passive Control for Large-angle Attitude Maneuver of Liquid-filled Spacecraft

  • 摘要: 研究了基于自适应无源控制的三轴稳定充液航天器大角度姿态机动问题.将液体晃动等效为黏性球摆模型,利用动量矩守恒定理推导出充液航天器耦合动力学方程.针对陀螺故障及无陀螺配置导致航天器姿态无角速度测量的情况,同时考虑存在外部未知干扰、转动惯量不确定性以及液体晃动位移不可测量的特性,设计自适应输出反馈无源控制,其中自适应更新律用于补偿外部未知干扰和估计液体晃动的位移变量.利用Lyapunov方法和LaSalle不变引理,证明该控制律不但可以保证闭环系统渐进稳定,而且可以保证二个期望平衡位置均达到稳定.仿真结果验证了本文控制方法的有效性.

     

  • [1] YUE Baozeng, SONG Xiaojuan. Advance in rigid-flexible-liquid-control coupling dynamics of spacecraft[J]. Adv. Mech., 2013, 43(1):163-173(岳宝增, 宋晓娟. 具有刚-柔-液-控耦合的航天器动力学研究进展[J]. 力学进展, 2013, 43(1):163-173)
    [2] YUE B, WU W, YAN Y. Modeling and coupling dynamics of the spacecraft with multiple propellant tanks[J]. AIAA J., 2016, 54(11):1-11
    [3] DENG Mingle, YUE Baozeng, HUANG hua. Study on equivalent mechanical model of large-scale liquid sloshing[J]. J. Astron., 2016, 37(6):631-638(邓明乐, 岳宝增, 黄华. 液体大幅晃动类等效力学模型研究[J]. 宇航学报. 2016, 37(6):631-638)
    [4] LI Qing, MA Xingrui, WANG Tianshu. Equivalent mechanical model for liquid sloshing in non-axisymmetric tanks[J]. J. Astron., 2011, 32(2):242-249(李青, 马兴瑞, 王天舒. 非轴对称贮箱液体晃动的等效力学模型[J]. 宇航学报, 2011, 32(2):242-249)
    [5] SONG Xiaojuan, YUE Baozeng, YAN Yulong, et al. Hybrid attitude maneuver control of liquid multi-mode sloshing liquid-filled spacecraft[J]. J. Astron., 2015, 36(7):819-825(宋晓娟, 岳宝增, 闫玉龙, 等. 液体多模态晃动充液航天器姿态机动复合控制[J]. 宇航学报, 2015, 36(7):819-825)
    [6] YUE B Z. Heteroclinic bifurcations in completely liquid-filled spacecraft with flexible appendage[J]. Nonlin. Dynam., 2007, 51(1):317-327
    [7] YUE B Z. Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft[J]. AIAA J., 2011, 49(10):2090-2099
    [8] REYHANOGLU M, HERVAS J R. Nonlinear control of space vehicles with multi-mass fuel slosh dynamics[C]//International Conference on Recent Advances in Space Technologies. Piscataway:IEEE Press, 2011:247-252
    [9] REYHANOGLU M, HERVAS J R. Nonlinear dynamics and control of space vehicles with multiple fuel slosh modes[J]. Control Eng. Pract., 2012, 20(9):912-918
    [10] KANG J Y, LEE S. Attitude acquisition of a satellite with a partially filled liquid tank[J]. J. Guid. Control Dyn., 2012, 31(3):790-793
    [11] KANG J Y, COCHRAN J. Resonant motion of a spin-stabilized thrusting spacecraft[J]. J. Guid. Control Dyn., 2004, 27(3):356-365
    [12] DU Hui. Attitude control of passive lunar lander with liquid sloshing[J]. Space Control Technol. Appl., 2011, 37(1):50-54(杜辉. 基于无源性的带液体晃动月球着陆器的姿态控制[J]. 空间控制技术与应用, 2011, 37(1):50-54)
    [13] CAI Jian, WANG Fang, ZHANG Honghua. Attitude tracking control of flexible spacecraft based on passivity[J]. J. Astron., 2010, 31(4):1030-1035(蔡建, 王芳, 张洪华. 基于无源性的挠性航天器姿态跟踪控制[J]. 宇航学报, 2010, 31(4):1030-1035)
    [14] LIZARRALDE, WEN J T. Attitude control without angular velocity measurement:a passivity approach[C]//IEEE International Conference on Robotics and Automation, 1995 Proceedings. Nagoya:IEEE, 1995.DOI:10. 1109/ROBOT.1995.525665
    [15] TSIOTRAS P. A passivity approach to attitude stabilization using nonredundant kinematic parameterizations[C]//Proceedings of the 34th Conference on Decision and Control, 1995.DOI: 10.1109/CDC.1995.478944
    [16] COSTIC B T, DAWSON D M, DE QUEIROZ M, et al. A quaternion-based adaptive attitude tracking controller without velocity measurements[J]. J. Guid. Control Dyn., 2001, 24(6):1214-1222
    [17] DI GENNARO S. Attitude tracking for flexible spacecraft from quaternion measurements[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas:IEEE, 2002:4090-4091
    [18] GENNARO S D. Passive attitude control of flexible spacecraft from quaternion measurements[J]. J. Optim. Theory Appl., 2003, 116(1):41-60
    [19] YIN Chunwu, HOU Mingshan, LI Mingxiang. Attitude tracking dynamic PD control without angular velocity measurement[J]. J. Motor. Control, 2017, 21(12):107-116(殷春武, 侯明善, 李明翔. 无角速度测量的姿态跟踪动态PD控制[J]. 电机与控制学报, 2017, 21(12):107-116)
    [20] ZHU Qiao, WANG Xudong, CUI Jiarui. Quaternion-based spacecraft attitude nonlinear controller[J]. Inf. Cont., 2012, 41(2):170-173(祝乔, 汪旭东, 崔家瑞. 基于四元数的航天器姿态非线性控制器[J]. 信息与控制, 2012, 41(2):170-173)
    [21] SHI Xingyu, QI Ruiyun. Modeling and attitude stability control of three-axis liquid-filled spacecraft[J]. J. Nanjing Univ. Aeron. Astron., 2017, 49(1):132-139(史星宇, 齐瑞云. 三轴充液航天器建模及姿态稳定控制[J]. 南京航空航天大学学报, 2017, 49(1):132-139)
    [22] LIU F, YUE B, ZHAO L. Attitude dynamics and control of spacecraft with a partially filled liquid tank and flexible panels[J]. Acta Astron., 2018, 143:327-336
    [23] ISIDORI A. Nonlinear Control Systems[M]. New York:Springer Science and Business Media, 2013
  • 加载中
计量
  • 文章访问数:  1045
  • HTML全文浏览量:  120
  • PDF下载量:  51
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2019-03-06
  • 修回日期:  2020-02-11
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回