留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

行星际激波导致的磁尾等离子片中ULF波动事件

宋小健 左平兵 沈晓晨

宋小健, 左平兵, 沈晓晨. 行星际激波导致的磁尾等离子片中ULF波动事件[J]. 空间科学学报, 2020, 40(4): 462-470. doi: 10.11728/cjss2020.04.462
引用本文: 宋小健, 左平兵, 沈晓晨. 行星际激波导致的磁尾等离子片中ULF波动事件[J]. 空间科学学报, 2020, 40(4): 462-470. doi: 10.11728/cjss2020.04.462
SONG Xiaojian, ZUO Pingbing, SHEN Xiaochen. ULF Wave in the Magnetotail Plasma Sheet Induced by Interplanetary Shock[J]. Chinese Journal of Space Science, 2020, 40(4): 462-470. doi: 10.11728/cjss2020.04.462
Citation: SONG Xiaojian, ZUO Pingbing, SHEN Xiaochen. ULF Wave in the Magnetotail Plasma Sheet Induced by Interplanetary Shock[J]. Chinese Journal of Space Science, 2020, 40(4): 462-470. doi: 10.11728/cjss2020.04.462

行星际激波导致的磁尾等离子片中ULF波动事件

doi: 10.11728/cjss2020.04.462
基金项目: 

国家自然科学基金项目(41731067)和深圳市科创委基础研究项目(JCYJ20180306171748011)共同资助

详细信息
    作者简介:

    宋小健,E-mail:pbzuo@hit.edu.cn

  • 中图分类号: P353

ULF Wave in the Magnetotail Plasma Sheet Induced by Interplanetary Shock

  • 摘要: 磁层中的超低频(ULF)波动在太阳风和磁层之间的能量输运过程中具有重要作用.ULF波动主要发生在内磁层,且内磁层中ULF波动影响粒子的加速及沉降,而在夜侧磁层尤其是磁尾等离子片中观测到的ULF波动比较少.基于中国自主磁层探测卫星TC-1的观测数据,发现了两例行星际激波导致的磁尾中心等离子片中ULF波动事件,并发现这两例ULF事例都包含很强的环向模驻波分量,与以往THEMIS卫星报道的同类事件观测特征相符.根据ULF波的观测特征,分析了这两例ULF波动的可能触发机制.研究结果有助于深入理解磁层对行星际激波的全球响应.

     

  • [1] SAMSON J C, HARROLD B G, RUOHONIEMI J M, et al. Field line resonances associated with MHD waveguides in the magnetosphere[J]. Geophys. Res. Lett., 1992, 19(5):441-444
    [2] ZONG Q, WANG Y, YUAN C, et al. Fast acceleration of "killer" electrons and energetic ions by interplanetary shock stimulated ULF waves in the inner magnetosphere[J]. Chin. Sci. Bull., 2011, 56:1188-1201
    [3] O'BRIEN T P, MCPHERRON R L, SORNETTE D, et al. Which magnetic storms produce relativistic electrons at geosynchronous orbit[J]. J. Geophys. Res., 2001, 106(A8):15533-15544
    [4] RAE I J, WATT C E J, FENRICH F R, et al. Energy deposition in the ionosphere through a global field line resonance[J]. Ann. Geophys., 2008, 25(12):2529-2539
    [5] GREENWALD R A, WALKER A D M. Energetics of long period resonant hydromagnetic waves[J]. Geophys. Res. Lett., 1980, 7(10):745-748
    [6] SAMSON J C, COGGER L L, PAO Q. Observations of field line resonances, auroral arcs, and auroral vortex structures[J]. J. Geophys. Res., 1996, 101(A8):17373-17384
    [7] SOUTHWOOD D J. Some features of field line resonances in the magnetosphere[J]. Planet. Space Sci., 1974, 22(3):483-491
    [8] BLANCO-CANO X, OMIDI N, RUSSELL C T. Global hybrid simulations:foreshock waves and cavitons under radial interplanetary magnetic field geometry[J]. J. Geophys. Res.:Space Phys., 2009, 114(A1):A01216. DOI: 10.1029/2008JA013406
    [9] TAKAHASHI K, MCPHERRON R L, TERASAWA T. Dependence of the spectrum of Pc 3-4 pulsations on the interplanetary magnetic field[J]. J. Geophys. Res., 1984, 89(A5):2770-2780
    [10] PU Z Y, KIVELSON M G. Kelvin-Helmholtz instability at the magnetopause:solution for compressible plasmas[J]. J. Geophys. Res., 1983, 88(A2):841-852
    [11] MENK F W. Magnetospheric ULF Waves:a Review[M]. Dordrecht:Springer, 2011:223-256
    [12] SIBECK D G. A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations[J]. J. Geophys. Res., 1990, 95(A4):3755-3771
    [13] SHEN X C, SHI Q Q, WANG B Y, et al. Dayside magnetospheric and ionospheric responses to a foreshock transient on 25 June 2008:1. FLR observed by satellite and ground-based magnetometers[J]. J. Geophys. Res.:Space Phys., 2018, 123(8):6335-6346
    [14] TIAN A M, SHEN X C, SHI Q Q, et al. Dayside magnetospheric and ionospheric responses to solar wind pressure increase:Multispacecraft and ground observations[J]. J. Geophys. Res.:Space Phys., 2016, 121(11):10813-10830
    [15] SHI Q Q, HARTINGER M, ANGELOPOULOS V, et al. THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events[J]. J. Geophys. Res.:Space Phys., 2013, 118(1):284-298
    [16] LIU Z X, ESCOUBET C P, PU Z, et al. The Double Star mission[J]. Ann. Geophys., 2005, 23(8):2707-2712
    [17] YAO Li, LIU Zhenxing, ZUO Pingbing, et al. Response of properties in the plasma sheet and at the geosynchronous orbit to interplanetary shock[J]. Chin. Sci. Bull., 2009, 54(17):2533-2541(姚丽, 刘振兴, 左平兵, 等. 磁尾等离子体片和地球同步轨道区域对行星际激波的响应[J]. 科学通报, 2009, 54(17):2533-2541)
    [18] YAO L, ZUO P B, FENG X S, et al. Responses of the magnetotail plasma sheet to two interplanetary shocks:TC-1 observations[J]. Chin. Sci. Bull., 2010, 55(6):530-538
    [19] SONNERUP B U Ö, SCHEIBLE M. Minimum and Maximum Variance Analysis[M]. Analysis Methods for Multispacecraft Data. Netherlands:ESA Publications Division, 1998:185-220
    [20] HARTINGER M, ANGELOPOULOS V, MOLDWIN M B, et al. Global energy transfer during a magnetospheric field line resonance[J]. Geophys. Res. Lett., 2011, 38(12):L1201
    [21] KIVELSON M G, SOUTHWOOD D J. Resonant ULF waves:a new interpretation[J]. Geophys. Res. Lett., 1985, 12(1):49-52
    [22] RICHARD G J, WRIGHT A N. ULF pulsations in a magnetospheric waveguide:comparison of real and simulated satellite data[J]. J. Geophys. Res., 1995, 100(A3):3531-3538
    [23] MANN I R, WRIGHT A N, CALLY P S. Coupling of magnetospheric cavity modes to field line resonances:a study of resonance widths[J]. J. Geophys. Res., 1995, 100(A10):19441-19456
    [24] ERIKSSON P T I, BLOMBERG L G, SCHAEFER S, et al. On the excitation of ULF waves by solar wind pressure enhancements[J]. Ann. Geophys., 2006, 24(11):3161-3172
    [25] ZHAO H Y, SHEN X C, TANG B B, et al. Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease[J]. J. Geophys. Res.:Space Phys., 2016, 121(2):1071-1077
    [26] SHI Q Q, HARTINGER M D, ANGELOPOULOS V, et al. Solar wind pressure pulse-driven magnetospheric vortices and their global consequences[J]. J. Geophys. Res.:Space Phys., 2014, 119(6):4274-4280
  • 加载中
计量
  • 文章访问数:  796
  • HTML全文浏览量:  79
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-06
  • 修回日期:  2019-12-03
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回