Advances in the Researches of the Middle and Upper Atmosphere in China
doi: 10.11728/cjss2020.05.856 cstr: 32142.14.cjss2020.05.856
-
摘要: In this report we summarize the research results by Chinese scientists in 2018-2020. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches on atmospheric structure and composition, climate and chemistry-climate coupling and climate modelling, dynamics in particular those inducing the coupling of the atmospheric layers.Abstract: In this report we summarize the research results by Chinese scientists in 2018-2020. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches on atmospheric structure and composition, climate and chemistry-climate coupling and climate modelling, dynamics in particular those inducing the coupling of the atmospheric layers.
-
Key words:
- Middle and upper atmosphere /
- Structure and composition /
- Climate /
- Layer coupling
-
[1] XIA Y, HUANG Y, HU Y, et al. Impacts of tropical tropopause warming on the stratospheric water vapor[J]. Climate Dyn., 2019, 53:3409-3418 [2] XIA Y, HU Y, LIU J, et al. Stratospheric ozone-induced cloud radiative effects on Antarctic sea ice[J]. Adv. Atmos. Sci., 2020, 37:1-10 [3] LIU R, FU Y. Verification of an approximate thermodynamic equation with application to study on Arctic stratospheric temperature changes[J]. J. Atmos. Sci., 2019, 76:3-9 [4] SHI C, GAO Y, CAI J, et al. Response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter[J]. J. Atmos. Sol-Terr. Phys., 2018, 169:122-129 [5] HU D, GUAN Z, TIAN W. Signatures of the arctic stratospheric ozone in northern hadley circulation extent and subtropical precipitation[J]. Geophys. Res. Lett., 2019, 46:12340-12349 [6] MA J, SHANGGUAN M, XIA H, et al. Rayleigh and sodium lidar system incorporating time-division and wavelength-division multiplexing[J], Opt. Commun., 2019, 448:116-123 [7] ZOU Z, XUE X, SHEN C, et al. Response of mesospheric HO2 and O3 to large Solar proton events[J]. J. Geophys. Res.:Space Phys., 2018, 123:5738-5746 [8] XUN Y, YANG G, SHE C Y, et al. The first concurrent observations of thermospheric Na layers from two nearby central mid-latitude lidar stations[J]. Geophys. Res. Lett., 2019, 46(4):1892-1899 [9] JIAO J, YANG G, CHENG X, et al. Simultaneous lidar observation of peculiar sporadic K and Na layers at São José dos Campos (23.1° S, 45.9° W), Brazil[J]. Adv. Space Res., 2018, 61(7):1942-1951 [10] WANG Z, YANG G, WANG J, et al. Lidar observations and studies of the lower-triangle potassium layer over Beijing[J]. Chin. J. Space Sci., 2018, 38(1):65-72 [11] YANG D, ZHANG T, WANG J, YAN C, PENG H. Observations of the prominent sporadic sodium layer over Haikou (in Chinese)[J]. Chin. J. Space Sci., 2018, 38(6):886-890 [12] JIANG G, XU J, WANG W, et al. A comparison of quiet time thermospheric winds between FPI observations and model calculations[J]. J. Geophys. Res.:Space Phys., 2018, 123. DOI.org/10.1029/2018JA025424 [13] LIU X, YUE J, WANG W, et al. Responses of lower thermospheric temperature to the 2013 St. Patrick's Day geomagnetic storm[J]. Geophys. Res. Lett., 2018, 45:4656-4664 [14] LIU Y, XU J, LIU X, et al. Responses of multiday oscillations in the nighttime thermospheric temperature to solar and geomagnetic activities measured by Fabry-Perot interferometer in China[J]. J. Geophys. Res.:Space Phys., 2019, 124. doi.org/10.1029/2019JA027237 [15] YANG R, XU J, ZHU Y, YUAN W. Comparison of Retrieval Methods for Neutral Wind Based on Airglow Measurements by a Ground-based Fabry-Perot Interferometer[J]. Chin. J. Space Sci., 2019, 39(1):76-83 [16] XU L Y, WEI K, WU X, et al. The effect of super volcanic eruptions on ozone depletion in a chemistry-climate model[J]. Adv. Atmos. Sci., 2019, 36(8):823-836 [17] XIA Y, XU W, HU Y, et al. Southern-hemisphere high-latitude stratospheric warming revisit[J]. Climate Dyn., 2020, 54:1671-1682 [18] LI Xiaoting, TIAN Wenshou, XIE Fei, et al. Joint impacts of ENSO Modoki and QBO on stratospheric ozone in winter in the Northern Hemisphere[J]. Acta Meteor. Sin., 2019, 77(3):456-474 [19] XIE Fei, LI Jianping, SUN Cheng, et al. Improved global surface temperature simulation using stratospheric ozone forcing with more accurate variability[J]. Sci. Rep., 2018, 8(1):1-10 [20] XIE Fei, MA Xuan, LI Jianping, et al. An advanced impact of Arctic stratospheric ozone changes on spring precipitation in China[J]. Clim. Dyn., 2018b, 51(11/12):4029-4041 [21] XIE Fei, MA Xuan, LI Jianping, et al. Using observed signals from the arctic stratosphere and indian ocean to predict April-May precipitation in central China[J]. J. Clim., 2020, 33(1):131-143 [22] MA Xuan, XIE Fei, LI Jianping, et al. Effects of Arctic stratospheric ozone changes on spring precipitation in the northwestern United States[J]. Atmos. Chem. Phys., 2019, 19(2):861-875 [23] XIE Fei, ZHOU Xin, LI Jianping, et al. Effect of the indo-pacific warm pool on lower-stratospheric water vapor and comparison with the effect of ENSO[J]. J. Clim., 2018, 31(3):929-943 [24] LU Jinpeng, XIE Fei, TIAN Wenshou, et al. Interannual variations in lower stratospheric ozone during the period 1984-2016[J]. J. Geophys. Res.:Atmos., 2019, 124(14):8225-8241 [25] ZHANG Jiankai, TIAN Wenshou, XIE Fei, et al. Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift[J]. Nat. Commun., 2018, 9(1):1-8 [26] ZHANG Jiankai, TIAN Wenshou, XIE Fei, et al. Zonally asymmetric trends of winter total column ozone in the northern middle latitudes[J]. Clim. Dyn., 2019, 52(7/8):4483-4500 [27] SHANGGUAN Ming, WANG Wuke, JIN Shuanggen. Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data[J]. Atmos. Chem. Phys., 2019, 19(10):6659-6679 [28] XIAO Na, ZHANG Jiankai, TIAN Wenshou, et al. Effects of nitrogen oxide emissions over East Asia on ozone and temperature in UTLS region of the Northern Hemisphere[J]. Plat. Meteor., 39(3):1-14 [29] YI W, XUE X, REID I, et al. Estimation of mesospheric densities at low latitudes using the Kunming meteor radar together with SABER temperatures[J]. J. Geophys. Res.:Space Phys., 123:3183-3195 [30] WU J, FENG W, XUE X, et al. The 27-day solar rotational cycle response in the mesospheric metal layers at low latitudes[J]. Geophys. Res. Lett., 2019, 46:7199-7206 [31] YI W, XUE X, CHEN J, et al. Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER[J]. Earth Planet. Phys., 3:136-146 [32] YI W, XUE X, REID I M, et al. Climatology of the mesopause relative density using a global distribution of meteor radars[J]. Atmos. Chem. Phys., 19:7567-7581 [33] RAO J, REN R, CHEN H, et al. Predictability of stratospheric sudden warmings in Beijing climate center forecast system with statistical error corrections[J]. J. Geophys. Res.:Atmos., 2019, 124:8385-8400 [34] RAO J, REN R, CHEN H, et al. Sub-seasonal to seasonal hindcasts of stratospheric sudden warming by BCC-CSM1.1(m):a comparison with ECMWF[J]. Adv. Atmos. Sci., 2019, 36(5):479-494 [35] YU Y, CAI M, SHI C, et al. Sub-seasonal prediction skill for the stratospheric meridional mass circulation variability in CFSv2[J]. Clim. Dyn., 2019, 52:631-650 [36] HU J, REN R. Stratospheric control of the Indian summer monsoon onset[J]. Dyn. Atmos. Ocean., 2018, 83:135-147 [37] YU Y, CAI M, SHI C. On the linkage among strong stratospheric mass circulation, stratospheric sudden warming, and cold weather events[J]. Mon. Weather Rew., 2018, 146:2717-2739 [38] HU J, LI T, XU H. Relationship between the North Pacific Gyre Oscillation and the onset of stratospheric final warming in the northern hemisphere[J]. Clim. Dyn., 2018, 51:3061-3075 [39] RAO J, REN R, CHEN H, et al. The stratospheric sudden warming event in February 2018 and its prediction by a climate system model[J]. J. Geophys. Res.:Atmos., 2018, 123:13332-13345 [40] YU B, XUE X, KUO C, et al. The intensification of metallic layered phenomena above thunderstorms through the modulation of atmospheric tides[J]. Sci. Rep., 2019, 9(1):1-13 [41] SUN L, XU J, XIONG C, et al. Midlatitudinal special airglow structures generated by the interaction between propagating medium-scale traveling ionospheric disturbance and nighttime plasma density enhancement at magnetically quiet time[J]. Geophys. Res. Lett., 2019, 46. doi.org/10.1029/2018GL080926 [42] Wu K, Xu J, Xiong C, Yuan W. Edge plasma enhancements of equatorial plasma depletions observed by all-sky imager and the C/NOFS satellite[J]. J. Geophys. Res.:Space Phys., 2018, 123:8835-8849 [43] YU F R, HUANG K M, ZHANG S D, et al. Quasi 10- and 16-day wave activities observed through meteor radar and MST radar during stratospheric final warming in 2015 spring[J]. J. Geophys. Res.:Atmos., 2019, 124. DOI.org/10.1029/2019JD030630 [44] HUANG K M, XI Y, WANG R, et al. Signature of a quasi 30-day oscillation at midlatitude based on wind observations from MST radar and meteor radar[J]. J. Geophys. Res.:Atmos., 2019, 124. doi.org/10.1029/2019JD031170 [45] CHEN D, STRUBE C, ERN M, et al. Global analysis for periodic variations in gravity wave squared amplitudes and momentum fluxes in the middle atmosphere[J]. Ann. Geophys., 2019, 37:487-506 [46] HU D, GUO Y, GUAN Z. Recent weakening in the stratospheric planetary wave intensity in early winter[J]. Geophys. Res. Lett., 2019, 46:3953-3962 [47] WU J F, XUE X H, LIU H L, et al. Assessment of the simulation of gravity waves generation by a tropical cyclone in the high-resolution WACCM and the WRF[J]. J. Adv. Model. Earth Syst., 2018, 10:2214-2227 [48] HUANG K M, YANG Z X, WANG R, et al. A statistical study of inertia gravity waves in the lower stratosphere over the Arctic region based on radiosonde observations[J]. J. Geophys. Res.:Atmos., 2018, 123. doi.org/10.1029/2017JD027998 [49] GONG S, YANG G, XU J, et al. Gravity wave propagation from the stratosphere into the mesosphere studied with lidar, meteor radar, and TIMED/SABER[J]. Atmosphere, 2019, 10(2):81 [50] LI Q, YUSUPOV K, AKCHURIN A, et al. First OH airglow observation of mesospheric gravity waves over European Russia region[J]. J. Geophys. Res.:Space Phys., 2018, 123:2168-2180 [51] LI Q, XU J, YUE J, et al. Evolution of a mesospheric bore in a duct observed by ground-based double-layer imagers and satellite observations over the Tibetan Plateau region[J]. J. Geophys. Res.:Space Phys., 2019, 124:1377-1388 [52] WANG C M, LI Q Z, XU J Y, et al. A study of wave sources of gravity wave events observer by OH airglow imager located at Donggang station[J]. Chin. J. Geophys., 2018, 61(6):2198-2206 [53] LIU X, XU J, YUE J, et al. Orographic primary and secondary gravity waves in the middle atmosphere from 16-year SABER observations[J]. Geophys. Res. Lett., 2019, 46:4512-4522 [54] LAI C, XU J, YUE J, et al. Automatic extraction of gravity waves from all-sky airglow image based on machine learning[J]. Remote Sens., 2019, 11:1516 [55] HUANG Jinlong, TIAN Wenshou, GRAY L J, et al. Preconditioning of Arctic stratospheric polar vortex shift events[J]. J. Clim., 2018, 31(14):5417-5436 [56] HUANG Jinlong, TIAN Wenshou. Eurasian cold air outbreaks under different arctic stratospheric polar vortex strengths[J]. J. Atmos. Sci., 2019, 76(5):1245-1264 [57] LI Yuanpu, TIAN Wenshou, XIE Fei, et al. The connection between the second leading mode of the winter North Pacific sea surface temperature anomalies and stratospheric sudden warming events[J]. Clim. Dyn., 2018, 51(1/2):581-595 [58] LIANG Jinglin, LUO Jiali, TIAN Hongying, et al. Analysis of abnormal signals in the upper troposphere and stratosphere before the persistent heavy rainfall event in South China in June 2005[J]. Clim. Environ. Res., 24(2):237-250 [59] LUO Jiali, LIANG Wenjun, XU Pingping, et al. Seasonal features and a case study of tropopause folds over the Tibetan Plateau[J]. Adv. Meteor., 2019. DOI: 10.1155/2019/4375123 [60] WANG Feiyang, TIAN Wenshou, XIE Fei, et al. Effect of Madden-Julian oscillation occurrence frequency on the interannual variability of Northern Hemisphere stratospheric wave activity in winter[J]. J. Clim., 2018, 31(13):5031-5049 [61] ZHANG Jiankai, XIE Fei, MA Zhichao, et al. Seasonal evolution of the quasi-biennial oscillation impact on the Northern Hemisphere polar vortex in winter[J]. J. Geophys. Res.:Atmos., 2019, 124(23):12568-12586 [62] ZHANG Kequan, WANG Tao, XU Mian, et al. Influence of wintertime polar vortex variation on the climate over the North Pacific during late winter and spring[J]. Atmosphere, 2019, 10(11):670 [63] ZHANG Ruhua, TIAN Wenshou, ZHANG Jiankai, et al. The corresponding tropospheric environments during downward-extending and nondownward-extending events of stratospheric northern annular mode anomalies[J]. J. Clim., 2019, 32(6):1857-1873 [64] HAN Yuanyuan, TIAN Wenshou, ZHANG Jiankai, et al. A case study of the uncorrelated relationship between tropical tropopause temperature anomalies and stratospheric water vapor anomalies[J]. J. Trop. Meteor., 2018, 24(3):356-368 [65] LI Yang, ZHANG Jiankai, TIAN Wenshou, et al. Impact of dynamical transmission and surface emission on ozone change in troposphere over Beijing[J]. Arid Meteor., 2018, 36(2):157-166 [66] LUO Jiali, PAN L L, HONOMICHL S B, et al. Space-time variability in UTLS chemical distribution in the Asian summer monsoon viewed by limb and nadir satellite sensors[J]. Atmos. Chem. Phys., 2018, 18(16):12511-12530 [67] SANG Wenjun, HUANG Qian, TIAN Wenshou, et al. A large eddy model study on the effect of overshooting convection on lower stratospheric water vapor[J]. J. Geophys. Res.:Atmos., 2018, 123(18):10023-10036 [68] HAN Yuanyuan, TIAN Wenshou, CHIPPERFIELD M P, et al. Attribution of the hemispheric asymmetries in trends of stratospheric trace gases inferred from Microwave Limb Sounder (MLS) Measurements[J]. J. Geophys. Res.:Atmos., 2019, 124(12):6283-6293 [69] WANG Wuke, SHANGGUAN Ming, TIAN Wenshou, et al. Large uncertainties in estimation of tropical tropopause temperature variabilities due to model vertical resolution[J]. J. Geophys. Res., 2019, 46(16):10043-10052 [70] WANG Wuke, MATTHES K, TIAN Wenshou, et al. Solar impacts on decadal variability of tropopause temperature and Lower Stratospheric (LS) water vapour:a mechanism through ocean-atmosphere coupling[J]. Clim. Dyn., 2019, 52(9/10):5585-5604 [71] WANG Yiping, WANG Hongyue, WANG Wuke. A stratospheric intrusion-influenced ozone pollution episode associated with an intense horizontal-trough event[J]. Atmosphere, 2020, 11(2):164 [72] WEI K, CAI Z, CHEN W, XU L. The effect of a well-resolved stratosphere on East Asian winter climate[J]. Climate Dyn., 2018, 51:4015-4028 [73] GONG H, WANG L, CHEN W, NATH D. Multidecadal fluctuation of the wintertime Arctic Oscillation pattern and its implication[J]. J. Climate, 2018, 31:5595-5608 [74] GONG H, WANG L, CHEN W, et al. Diversity of the wintertime Arctic oscillation pattern among CMIP5 models:role of stratospheric polar vortex[J]. J. Climate, 2019, 32:5235-5250 [75] CHEN S, YU B, CHEN W, WU R. A review of atmosphere-ocean forcings outside the tropical Pacific on the El Niño-Southern Oscillation occurrence[J]. Atmosphere, 2019, 9:439 [76] CHEN S, WU R, CHEN W. Enhanced impact of Arctic sea ice change during boreal autumn on the following spring Arctic oscillation since the mid-1990s[J]. Climate Dyn., 2019, 53:5607-5621 [77] DING S, CHEN W, GRAF H F, et al. Distinct winter patterns of tropical Pacific convection anomaly and the associated extratropical wave trains in the Northern Hemisphere[J]. Climate Dyn., 2018, 51:2003-2022 [78] DING S, CHEN W, GRAF H F, et al. Quasi-stationary extratropical wave trains associated with distinct tropical Pacific seasonal mean convection patterns:observational and AMIP model results[J]. Climate Dyn., 2019, 53:2451-2476 [79] HUANGFU J, CHEN W, JIAN M, HUANG R H. Impact of the cross-tropopause wind shear on tropical cyclone genesis over the Western North Pacific in May[J]. Climate Dyn., 2019, 52:3845-3855 [80] HUANG R H, CHEN W, WEI K, et al. Atmospheric dynamics in the stratosphere and its interaction with tropospheric processes:progress and problems[J]. Chin. J. Atmos. Sci., 2018, 42(3):463-487 [81] HU D, GUAN Z, TIAN W, et al. Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific[J]. Nature Commun., 2018, 9:1697 [82] HU D, GUAN Z, GUO Y, et al. Dynamical connection between the stratospheric Arctic vortex and sea surface temperatures in the North Atlantic[J]. Clim. Dyn., 2019, 32:6979-6993 [83] HU D, GUAN Z. Decadal relationship between the stratospheric Arctic vortex and Pacific Decadal oscillation[J]. J. Climate, 2018, 31:3371-3386 [84] RAO J, GARFINKEL C, REN R. Modulation of the northern winter stratospheric El Niño-Southern Oscillation teleconnection by the PDO[J]. J. Climate, 2019, 32:5761-5783 [85] YU Y, REN R. Understanding the variation of stratosphere-troposphere coupling during stratospheric northern annular mode events from a mass circulation perspective[J]. Clim. Dyn., 2019, 53:5141-5164 -
-
计量
- 文章访问数: 1496
- HTML全文浏览量: 213
- PDF下载量: 159
-
被引次数:
0(来源:Crossref)
0(来源:其他)