留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in the Researches of the Middle and Upper Atmosphere in China

CHEN Zeyu CHEN Hongbin XU Jiyao HUANG Kaiming XUE Xianghui HU Dingzhu CHEN Wen YANG Guotao TIAN Wenshou HU Yongyun XIA Yan

CHEN Zeyu, CHEN Hongbin, XU Jiyao, HUANG Kaiming, XUE Xianghui, HU Dingzhu, CHEN Wen, YANG Guotao, TIAN Wenshou, HU Yongyun, XIA Yan. Advances in the Researches of the Middle and Upper Atmosphere in China[J]. 空间科学学报, 2020, 40(5): 856-874. doi: 10.11728/cjss2020.05.856
引用本文: CHEN Zeyu, CHEN Hongbin, XU Jiyao, HUANG Kaiming, XUE Xianghui, HU Dingzhu, CHEN Wen, YANG Guotao, TIAN Wenshou, HU Yongyun, XIA Yan. Advances in the Researches of the Middle and Upper Atmosphere in China[J]. 空间科学学报, 2020, 40(5): 856-874. doi: 10.11728/cjss2020.05.856
CHEN Zeyu, CHEN Hongbin, XU Jiyao, HUANG Kaiming, XUE Xianghui, HU Dingzhu, CHEN Wen, YANG Guotao, TIAN Wenshou, HU Yongyun, XIA Yan. Advances in the Researches of the Middle and Upper Atmosphere in China[J]. Chinese Journal of Space Science, 2020, 40(5): 856-874. doi: 10.11728/cjss2020.05.856
Citation: CHEN Zeyu, CHEN Hongbin, XU Jiyao, HUANG Kaiming, XUE Xianghui, HU Dingzhu, CHEN Wen, YANG Guotao, TIAN Wenshou, HU Yongyun, XIA Yan. Advances in the Researches of the Middle and Upper Atmosphere in China[J]. Chinese Journal of Space Science, 2020, 40(5): 856-874. doi: 10.11728/cjss2020.05.856

Advances in the Researches of the Middle and Upper Atmosphere in China

doi: 10.11728/cjss2020.05.856
详细信息
    作者简介:

    CHEN Hongbin,E-mail:chb@mail.iap.ac.cn

  • 中图分类号: P351

Advances in the Researches of the Middle and Upper Atmosphere in China

More Information
    Author Bio:

    CHEN Hongbin,E-mail:chb@mail.iap.ac.cn

  • 摘要: In this report we summarize the research results by Chinese scientists in 2018-2020. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches on atmospheric structure and composition, climate and chemistry-climate coupling and climate modelling, dynamics in particular those inducing the coupling of the atmospheric layers.

     

  • [1] XIA Y, HUANG Y, HU Y, et al. Impacts of tropical tropopause warming on the stratospheric water vapor[J]. Climate Dyn., 2019, 53:3409-3418
    [2] XIA Y, HU Y, LIU J, et al. Stratospheric ozone-induced cloud radiative effects on Antarctic sea ice[J]. Adv. Atmos. Sci., 2020, 37:1-10
    [3] LIU R, FU Y. Verification of an approximate thermodynamic equation with application to study on Arctic stratospheric temperature changes[J]. J. Atmos. Sci., 2019, 76:3-9
    [4] SHI C, GAO Y, CAI J, et al. Response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter[J]. J. Atmos. Sol-Terr. Phys., 2018, 169:122-129
    [5] HU D, GUAN Z, TIAN W. Signatures of the arctic stratospheric ozone in northern hadley circulation extent and subtropical precipitation[J]. Geophys. Res. Lett., 2019, 46:12340-12349
    [6] MA J, SHANGGUAN M, XIA H, et al. Rayleigh and sodium lidar system incorporating time-division and wavelength-division multiplexing[J], Opt. Commun., 2019, 448:116-123
    [7] ZOU Z, XUE X, SHEN C, et al. Response of mesospheric HO2 and O3 to large Solar proton events[J]. J. Geophys. Res.:Space Phys., 2018, 123:5738-5746
    [8] XUN Y, YANG G, SHE C Y, et al. The first concurrent observations of thermospheric Na layers from two nearby central mid-latitude lidar stations[J]. Geophys. Res. Lett., 2019, 46(4):1892-1899
    [9] JIAO J, YANG G, CHENG X, et al. Simultaneous lidar observation of peculiar sporadic K and Na layers at São José dos Campos (23.1° S, 45.9° W), Brazil[J]. Adv. Space Res., 2018, 61(7):1942-1951
    [10] WANG Z, YANG G, WANG J, et al. Lidar observations and studies of the lower-triangle potassium layer over Beijing[J]. Chin. J. Space Sci., 2018, 38(1):65-72
    [11] YANG D, ZHANG T, WANG J, YAN C, PENG H. Observations of the prominent sporadic sodium layer over Haikou (in Chinese)[J]. Chin. J. Space Sci., 2018, 38(6):886-890
    [12] JIANG G, XU J, WANG W, et al. A comparison of quiet time thermospheric winds between FPI observations and model calculations[J]. J. Geophys. Res.:Space Phys., 2018, 123. DOI.org/10.1029/2018JA025424
    [13] LIU X, YUE J, WANG W, et al. Responses of lower thermospheric temperature to the 2013 St. Patrick's Day geomagnetic storm[J]. Geophys. Res. Lett., 2018, 45:4656-4664
    [14] LIU Y, XU J, LIU X, et al. Responses of multiday oscillations in the nighttime thermospheric temperature to solar and geomagnetic activities measured by Fabry-Perot interferometer in China[J]. J. Geophys. Res.:Space Phys., 2019, 124. doi.org/10.1029/2019JA027237
    [15] YANG R, XU J, ZHU Y, YUAN W. Comparison of Retrieval Methods for Neutral Wind Based on Airglow Measurements by a Ground-based Fabry-Perot Interferometer[J]. Chin. J. Space Sci., 2019, 39(1):76-83
    [16] XU L Y, WEI K, WU X, et al. The effect of super volcanic eruptions on ozone depletion in a chemistry-climate model[J]. Adv. Atmos. Sci., 2019, 36(8):823-836
    [17] XIA Y, XU W, HU Y, et al. Southern-hemisphere high-latitude stratospheric warming revisit[J]. Climate Dyn., 2020, 54:1671-1682
    [18] LI Xiaoting, TIAN Wenshou, XIE Fei, et al. Joint impacts of ENSO Modoki and QBO on stratospheric ozone in winter in the Northern Hemisphere[J]. Acta Meteor. Sin., 2019, 77(3):456-474
    [19] XIE Fei, LI Jianping, SUN Cheng, et al. Improved global surface temperature simulation using stratospheric ozone forcing with more accurate variability[J]. Sci. Rep., 2018, 8(1):1-10
    [20] XIE Fei, MA Xuan, LI Jianping, et al. An advanced impact of Arctic stratospheric ozone changes on spring precipitation in China[J]. Clim. Dyn., 2018b, 51(11/12):4029-4041
    [21] XIE Fei, MA Xuan, LI Jianping, et al. Using observed signals from the arctic stratosphere and indian ocean to predict April-May precipitation in central China[J]. J. Clim., 2020, 33(1):131-143
    [22] MA Xuan, XIE Fei, LI Jianping, et al. Effects of Arctic stratospheric ozone changes on spring precipitation in the northwestern United States[J]. Atmos. Chem. Phys., 2019, 19(2):861-875
    [23] XIE Fei, ZHOU Xin, LI Jianping, et al. Effect of the indo-pacific warm pool on lower-stratospheric water vapor and comparison with the effect of ENSO[J]. J. Clim., 2018, 31(3):929-943
    [24] LU Jinpeng, XIE Fei, TIAN Wenshou, et al. Interannual variations in lower stratospheric ozone during the period 1984-2016[J]. J. Geophys. Res.:Atmos., 2019, 124(14):8225-8241
    [25] ZHANG Jiankai, TIAN Wenshou, XIE Fei, et al. Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift[J]. Nat. Commun., 2018, 9(1):1-8
    [26] ZHANG Jiankai, TIAN Wenshou, XIE Fei, et al. Zonally asymmetric trends of winter total column ozone in the northern middle latitudes[J]. Clim. Dyn., 2019, 52(7/8):4483-4500
    [27] SHANGGUAN Ming, WANG Wuke, JIN Shuanggen. Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data[J]. Atmos. Chem. Phys., 2019, 19(10):6659-6679
    [28] XIAO Na, ZHANG Jiankai, TIAN Wenshou, et al. Effects of nitrogen oxide emissions over East Asia on ozone and temperature in UTLS region of the Northern Hemisphere[J]. Plat. Meteor., 39(3):1-14
    [29] YI W, XUE X, REID I, et al. Estimation of mesospheric densities at low latitudes using the Kunming meteor radar together with SABER temperatures[J]. J. Geophys. Res.:Space Phys., 123:3183-3195
    [30] WU J, FENG W, XUE X, et al. The 27-day solar rotational cycle response in the mesospheric metal layers at low latitudes[J]. Geophys. Res. Lett., 2019, 46:7199-7206
    [31] YI W, XUE X, CHEN J, et al. Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER[J]. Earth Planet. Phys., 3:136-146
    [32] YI W, XUE X, REID I M, et al. Climatology of the mesopause relative density using a global distribution of meteor radars[J]. Atmos. Chem. Phys., 19:7567-7581
    [33] RAO J, REN R, CHEN H, et al. Predictability of stratospheric sudden warmings in Beijing climate center forecast system with statistical error corrections[J]. J. Geophys. Res.:Atmos., 2019, 124:8385-8400
    [34] RAO J, REN R, CHEN H, et al. Sub-seasonal to seasonal hindcasts of stratospheric sudden warming by BCC-CSM1.1(m):a comparison with ECMWF[J]. Adv. Atmos. Sci., 2019, 36(5):479-494
    [35] YU Y, CAI M, SHI C, et al. Sub-seasonal prediction skill for the stratospheric meridional mass circulation variability in CFSv2[J]. Clim. Dyn., 2019, 52:631-650
    [36] HU J, REN R. Stratospheric control of the Indian summer monsoon onset[J]. Dyn. Atmos. Ocean., 2018, 83:135-147
    [37] YU Y, CAI M, SHI C. On the linkage among strong stratospheric mass circulation, stratospheric sudden warming, and cold weather events[J]. Mon. Weather Rew., 2018, 146:2717-2739
    [38] HU J, LI T, XU H. Relationship between the North Pacific Gyre Oscillation and the onset of stratospheric final warming in the northern hemisphere[J]. Clim. Dyn., 2018, 51:3061-3075
    [39] RAO J, REN R, CHEN H, et al. The stratospheric sudden warming event in February 2018 and its prediction by a climate system model[J]. J. Geophys. Res.:Atmos., 2018, 123:13332-13345
    [40] YU B, XUE X, KUO C, et al. The intensification of metallic layered phenomena above thunderstorms through the modulation of atmospheric tides[J]. Sci. Rep., 2019, 9(1):1-13
    [41] SUN L, XU J, XIONG C, et al. Midlatitudinal special airglow structures generated by the interaction between propagating medium-scale traveling ionospheric disturbance and nighttime plasma density enhancement at magnetically quiet time[J]. Geophys. Res. Lett., 2019, 46. doi.org/10.1029/2018GL080926
    [42] Wu K, Xu J, Xiong C, Yuan W. Edge plasma enhancements of equatorial plasma depletions observed by all-sky imager and the C/NOFS satellite[J]. J. Geophys. Res.:Space Phys., 2018, 123:8835-8849
    [43] YU F R, HUANG K M, ZHANG S D, et al. Quasi 10- and 16-day wave activities observed through meteor radar and MST radar during stratospheric final warming in 2015 spring[J]. J. Geophys. Res.:Atmos., 2019, 124. DOI.org/10.1029/2019JD030630
    [44] HUANG K M, XI Y, WANG R, et al. Signature of a quasi 30-day oscillation at midlatitude based on wind observations from MST radar and meteor radar[J]. J. Geophys. Res.:Atmos., 2019, 124. doi.org/10.1029/2019JD031170
    [45] CHEN D, STRUBE C, ERN M, et al. Global analysis for periodic variations in gravity wave squared amplitudes and momentum fluxes in the middle atmosphere[J]. Ann. Geophys., 2019, 37:487-506
    [46] HU D, GUO Y, GUAN Z. Recent weakening in the stratospheric planetary wave intensity in early winter[J]. Geophys. Res. Lett., 2019, 46:3953-3962
    [47] WU J F, XUE X H, LIU H L, et al. Assessment of the simulation of gravity waves generation by a tropical cyclone in the high-resolution WACCM and the WRF[J]. J. Adv. Model. Earth Syst., 2018, 10:2214-2227
    [48] HUANG K M, YANG Z X, WANG R, et al. A statistical study of inertia gravity waves in the lower stratosphere over the Arctic region based on radiosonde observations[J]. J. Geophys. Res.:Atmos., 2018, 123. doi.org/10.1029/2017JD027998
    [49] GONG S, YANG G, XU J, et al. Gravity wave propagation from the stratosphere into the mesosphere studied with lidar, meteor radar, and TIMED/SABER[J]. Atmosphere, 2019, 10(2):81
    [50] LI Q, YUSUPOV K, AKCHURIN A, et al. First OH airglow observation of mesospheric gravity waves over European Russia region[J]. J. Geophys. Res.:Space Phys., 2018, 123:2168-2180
    [51] LI Q, XU J, YUE J, et al. Evolution of a mesospheric bore in a duct observed by ground-based double-layer imagers and satellite observations over the Tibetan Plateau region[J]. J. Geophys. Res.:Space Phys., 2019, 124:1377-1388
    [52] WANG C M, LI Q Z, XU J Y, et al. A study of wave sources of gravity wave events observer by OH airglow imager located at Donggang station[J]. Chin. J. Geophys., 2018, 61(6):2198-2206
    [53] LIU X, XU J, YUE J, et al. Orographic primary and secondary gravity waves in the middle atmosphere from 16-year SABER observations[J]. Geophys. Res. Lett., 2019, 46:4512-4522
    [54] LAI C, XU J, YUE J, et al. Automatic extraction of gravity waves from all-sky airglow image based on machine learning[J]. Remote Sens., 2019, 11:1516
    [55] HUANG Jinlong, TIAN Wenshou, GRAY L J, et al. Preconditioning of Arctic stratospheric polar vortex shift events[J]. J. Clim., 2018, 31(14):5417-5436
    [56] HUANG Jinlong, TIAN Wenshou. Eurasian cold air outbreaks under different arctic stratospheric polar vortex strengths[J]. J. Atmos. Sci., 2019, 76(5):1245-1264
    [57] LI Yuanpu, TIAN Wenshou, XIE Fei, et al. The connection between the second leading mode of the winter North Pacific sea surface temperature anomalies and stratospheric sudden warming events[J]. Clim. Dyn., 2018, 51(1/2):581-595
    [58] LIANG Jinglin, LUO Jiali, TIAN Hongying, et al. Analysis of abnormal signals in the upper troposphere and stratosphere before the persistent heavy rainfall event in South China in June 2005[J]. Clim. Environ. Res., 24(2):237-250
    [59] LUO Jiali, LIANG Wenjun, XU Pingping, et al. Seasonal features and a case study of tropopause folds over the Tibetan Plateau[J]. Adv. Meteor., 2019. DOI: 10.1155/2019/4375123
    [60] WANG Feiyang, TIAN Wenshou, XIE Fei, et al. Effect of Madden-Julian oscillation occurrence frequency on the interannual variability of Northern Hemisphere stratospheric wave activity in winter[J]. J. Clim., 2018, 31(13):5031-5049
    [61] ZHANG Jiankai, XIE Fei, MA Zhichao, et al. Seasonal evolution of the quasi-biennial oscillation impact on the Northern Hemisphere polar vortex in winter[J]. J. Geophys. Res.:Atmos., 2019, 124(23):12568-12586
    [62] ZHANG Kequan, WANG Tao, XU Mian, et al. Influence of wintertime polar vortex variation on the climate over the North Pacific during late winter and spring[J]. Atmosphere, 2019, 10(11):670
    [63] ZHANG Ruhua, TIAN Wenshou, ZHANG Jiankai, et al. The corresponding tropospheric environments during downward-extending and nondownward-extending events of stratospheric northern annular mode anomalies[J]. J. Clim., 2019, 32(6):1857-1873
    [64] HAN Yuanyuan, TIAN Wenshou, ZHANG Jiankai, et al. A case study of the uncorrelated relationship between tropical tropopause temperature anomalies and stratospheric water vapor anomalies[J]. J. Trop. Meteor., 2018, 24(3):356-368
    [65] LI Yang, ZHANG Jiankai, TIAN Wenshou, et al. Impact of dynamical transmission and surface emission on ozone change in troposphere over Beijing[J]. Arid Meteor., 2018, 36(2):157-166
    [66] LUO Jiali, PAN L L, HONOMICHL S B, et al. Space-time variability in UTLS chemical distribution in the Asian summer monsoon viewed by limb and nadir satellite sensors[J]. Atmos. Chem. Phys., 2018, 18(16):12511-12530
    [67] SANG Wenjun, HUANG Qian, TIAN Wenshou, et al. A large eddy model study on the effect of overshooting convection on lower stratospheric water vapor[J]. J. Geophys. Res.:Atmos., 2018, 123(18):10023-10036
    [68] HAN Yuanyuan, TIAN Wenshou, CHIPPERFIELD M P, et al. Attribution of the hemispheric asymmetries in trends of stratospheric trace gases inferred from Microwave Limb Sounder (MLS) Measurements[J]. J. Geophys. Res.:Atmos., 2019, 124(12):6283-6293
    [69] WANG Wuke, SHANGGUAN Ming, TIAN Wenshou, et al. Large uncertainties in estimation of tropical tropopause temperature variabilities due to model vertical resolution[J]. J. Geophys. Res., 2019, 46(16):10043-10052
    [70] WANG Wuke, MATTHES K, TIAN Wenshou, et al. Solar impacts on decadal variability of tropopause temperature and Lower Stratospheric (LS) water vapour:a mechanism through ocean-atmosphere coupling[J]. Clim. Dyn., 2019, 52(9/10):5585-5604
    [71] WANG Yiping, WANG Hongyue, WANG Wuke. A stratospheric intrusion-influenced ozone pollution episode associated with an intense horizontal-trough event[J]. Atmosphere, 2020, 11(2):164
    [72] WEI K, CAI Z, CHEN W, XU L. The effect of a well-resolved stratosphere on East Asian winter climate[J]. Climate Dyn., 2018, 51:4015-4028
    [73] GONG H, WANG L, CHEN W, NATH D. Multidecadal fluctuation of the wintertime Arctic Oscillation pattern and its implication[J]. J. Climate, 2018, 31:5595-5608
    [74] GONG H, WANG L, CHEN W, et al. Diversity of the wintertime Arctic oscillation pattern among CMIP5 models:role of stratospheric polar vortex[J]. J. Climate, 2019, 32:5235-5250
    [75] CHEN S, YU B, CHEN W, WU R. A review of atmosphere-ocean forcings outside the tropical Pacific on the El Niño-Southern Oscillation occurrence[J]. Atmosphere, 2019, 9:439
    [76] CHEN S, WU R, CHEN W. Enhanced impact of Arctic sea ice change during boreal autumn on the following spring Arctic oscillation since the mid-1990s[J]. Climate Dyn., 2019, 53:5607-5621
    [77] DING S, CHEN W, GRAF H F, et al. Distinct winter patterns of tropical Pacific convection anomaly and the associated extratropical wave trains in the Northern Hemisphere[J]. Climate Dyn., 2018, 51:2003-2022
    [78] DING S, CHEN W, GRAF H F, et al. Quasi-stationary extratropical wave trains associated with distinct tropical Pacific seasonal mean convection patterns:observational and AMIP model results[J]. Climate Dyn., 2019, 53:2451-2476
    [79] HUANGFU J, CHEN W, JIAN M, HUANG R H. Impact of the cross-tropopause wind shear on tropical cyclone genesis over the Western North Pacific in May[J]. Climate Dyn., 2019, 52:3845-3855
    [80] HUANG R H, CHEN W, WEI K, et al. Atmospheric dynamics in the stratosphere and its interaction with tropospheric processes:progress and problems[J]. Chin. J. Atmos. Sci., 2018, 42(3):463-487
    [81] HU D, GUAN Z, TIAN W, et al. Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific[J]. Nature Commun., 2018, 9:1697
    [82] HU D, GUAN Z, GUO Y, et al. Dynamical connection between the stratospheric Arctic vortex and sea surface temperatures in the North Atlantic[J]. Clim. Dyn., 2019, 32:6979-6993
    [83] HU D, GUAN Z. Decadal relationship between the stratospheric Arctic vortex and Pacific Decadal oscillation[J]. J. Climate, 2018, 31:3371-3386
    [84] RAO J, GARFINKEL C, REN R. Modulation of the northern winter stratospheric El Niño-Southern Oscillation teleconnection by the PDO[J]. J. Climate, 2019, 32:5761-5783
    [85] YU Y, REN R. Understanding the variation of stratosphere-troposphere coupling during stratospheric northern annular mode events from a mass circulation perspective[J]. Clim. Dyn., 2019, 53:5141-5164
  • 加载中
计量
  • 文章访问数:  982
  • HTML全文浏览量:  141
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回