留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用聚类算法区分小尺度电离层行扰事件与赤道等离子体泡事件

汪领 尹凡

汪领, 尹凡. 利用聚类算法区分小尺度电离层行扰事件与赤道等离子体泡事件[J]. 空间科学学报, 2020, 40(6): 1014-1023. doi: 10.11728/cjss2020.06.1014
引用本文: 汪领, 尹凡. 利用聚类算法区分小尺度电离层行扰事件与赤道等离子体泡事件[J]. 空间科学学报, 2020, 40(6): 1014-1023. doi: 10.11728/cjss2020.06.1014
WANG Ling, YIN Fan. Distinguish Small-scale Traveling Ionospheric Disturbances and Equatorial Plasma Bubbles by Clustering Algorithm[J]. Chinese Journal of Space Science, 2020, 40(6): 1014-1023. doi: 10.11728/cjss2020.06.1014
Citation: WANG Ling, YIN Fan. Distinguish Small-scale Traveling Ionospheric Disturbances and Equatorial Plasma Bubbles by Clustering Algorithm[J]. Chinese Journal of Space Science, 2020, 40(6): 1014-1023. doi: 10.11728/cjss2020.06.1014

利用聚类算法区分小尺度电离层行扰事件与赤道等离子体泡事件

doi: 10.11728/cjss2020.06.1014
基金项目: 

国家重点研发计划项目(2018YFC1503501,2018YFC1503501-01),国家自然科学基金重点项目(41431073)和国家自然科学基金面上项目(41474157)共同资助

详细信息
    作者简介:

    汪领,E-mail:wlydjqcg@whu.edu.cn

    通讯作者:

    尹凡,E-mail:yinfan@whu.edu.cn

  • 中图分类号: P352

Distinguish Small-scale Traveling Ionospheric Disturbances and Equatorial Plasma Bubbles by Clustering Algorithm

  • 摘要: 利用Swarm卫星2015年1月1日至2019年12月31日的50Hz高频磁场数据,根据阈值判断垂直于主磁场方向的扰动,对磁纬45°N-45°S之间的小尺度电离层行扰事件进行探测.为避免混淆而产生的干扰,可以根据阈值判断平行于主磁场方向是否发生扰动,从而排除典型的赤道等离子体泡事件.但对于较弱的赤道等离子体泡事件,扰动阈值判断无效.为避免弱赤道等离子体泡事件的污染,根据小尺度电离层行扰事件和赤道等离子体泡事件在不同参数空间中的密度分布差异,利用基于密度的聚类算法将赤道等离子体泡事件进一步甄别提取.结果表明,聚类算法能够有效地将赤道等离子体泡事件从小尺度电离层行扰事件中甄选出来,并使小尺度电离层行扰事件聚类与赤道等离子体泡事件聚类形成清晰的边界.由聚类算法导出的弱赤道等离子体泡事件主要分布在磁纬15°N-15°S,地理经度20°-60°W,月份10至3月之间,并且在20:00MLT-24:00MLT存在高发生率,同时依赖于太阳活动,这也验证了前人的相关研究结果.

     

  • [1] YIN F, LUHR H, PARK J, et al. Comprehensive analysis of the magnetic signatures of small-scale traveling ionospheric disturbances, as observed by Swarm[J]. J. Geophys. Res: Space Phys., 2019, 124(12):10794-10815.DOI: 10.1029/2019JA027523
    [2] MARTINIS C, BAUMGARDNER J, WROTEN J, et al. Seasonal dependence of MSTIDs obtained from 630.0nm airglow imaging at Arecibo[J]. Geophys. Res. Lett., 2010, 37(11):1-5.DOI: 10.1029/2010GL043569
    [3] YOKOYAMA T, HYSELL D L, OTSUKA Y, et al. Three-Dimensional simulation of the coupled Perkins and Es-Layer instabilities in the nighttime midlatitude ionosphere[J]. J. Geophys. Res.: Space Phys., 2009, 114(A3): 1-16.DOI: 10.1029/2008JA013789
    [4] BEHNKE R. F layer height bands in the nocturnal ionosphere over Arecibo[J]. J. Geophys. Res.: Space Phys., 1979, 84(A3):974-978
    [5] COSGROVE R B, TSUNODA R T. Instability of the E-F coupled nighttime midlatitude ionosphere[J]. J. Geophys. Res.: Space Phys., 2004, 109(A4):1-7.DOI: 10.1029/2003JA010243
    [6] TSUNODA, ROLAND T. On the coupling of layer instabilities in the nighttime midlatitude ionosphere[J]. J. Geophys. Res.: Space Phys., 2006, 111(A11):1-14.DOI: 10.1029/2006JA011630
    [7] PARK J, LUHR H, STOLLE C, et al. Statistical survey of nighttime midlatitude magnetic fluctuations: their source location and Poynting flux as derived from the Swarm constellation[J]. J. Geophys. Res.: Space Phys., 2016, 121(11):11235-11248. DOI: 10.1002/2016JA023408
    [8] PARK J, LUHR H, STOLLE C, et al. Magnetic signatures of medium-scale traveling ionospheric disturbances as observed by CHAMP[J]. J. Geophys. Res.: Space Phys., 2009, 114(A3):1-13. DOI: 10.1029/2008JA013792
    [9] PARK J, LUHR H, KERVALISHVILI G, et al. Nighttime magnetic field fluctuations in the topside ionosphere at midlatitudes and their relation to medium-scale traveling ionospheric disturbances: the spatial structure and scale sizes[J]. J. Geophys. Res.: Space Phys., 2015, 120 (8):6818-6830.DOI: 10.1002/2015JA021315
    [10] KELLY M. The Earth's Ionosphere: Plasma Physics And Electrodynamics[M]. 2nd. Boston: Academic Press, 2009
    [11] WOODMAN R F. Spread F-an old equatorial aeronomy problem finally resolved[J]. Ann. Geophys., 2009, 27(5):1915-1934
    [12] KELLEY M C, MAKELA J J, LA BEAUJARDIERE O D, et al. Convective ionospheric storms: a review[J]. Rev. Geophys., 2011, 49(2):1-26. DOI: 10.1029/2010RG000340
    [13] LUHR H, ROTHER M, MAUS S, et al. The diamagnetic effect of the equatorial Appleton anomaly: its characteristics and impact on geomagnetic field modeling[J]. Geophys. Res. Lett., 2003, 30(17):1-4.DOI: 10.1029/2003GL017407
    [14] PARK J, LUHR H, STOLLE C, et al. The characteristics of field-aligned currents associated with equatorial plasma bubbles as observed by the CHAMP satellite[J]. Ann. Geophys., 2009, 27:2685-2697
    [15] XIONG C, LUHR H, MA S Y, et al. Features of highly structured equatorial plasma irregularities deduced from CHAMP observations[J]. Ann. Geophys., 2012, 30(8): 1259-1269
    [16] STOLLE C, LUHR H, ROTHER M, et al. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite[J]. J. Geophys. Res.: Space Phys., 2006, 111(A2):1-13. DOI: 10.1029/2005JA011184
    [17] LUHR H, XIONG C, PARK J, et al. Systematic study of intermediate-scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations[J]. Front. Phys., 2014, 2:15
    [18] YOKOYAMA T, STOLLE C. Low and midlatitude ionospheric plasma density irregularities and their effects on geomagnetic field[J]. Space Sci. Rev., 2017, 206(1):495-519
    [19] ESTER M, KRIEGEL H, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial Databases with Noise[C]//Proceeding of 2nd International Conference on Knowledge Discovery and Data Mining. Portland: AIAA Press, 1996:226-231
    [20] PARK J, STOLLE C, LUHR H, et al. Magnetic signatures and conjugate features of low-latitude plasma blobs as observed by the CHAMP satellite[J]. J. Geophys. Res.: Space Phys., 2008, 113(A9):1-10.DOI: 10.1029/2008JA013211
    [21] WANG Cheng, LIU Yafeng, WANG Xincheng, et al. Appraisal identification of classifier's performance[J]. Electron. Design Eng., 2011, 19(8):13-15, 21(王成, 刘亚峰, 王新成, 等. 分类器的分类性能评价指标[J]. 电子设计工程, 2011, 19(8):13-15, 21)
  • 加载中
计量
  • 文章访问数:  555
  • HTML全文浏览量:  71
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-04-17
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回